ATX开关电源的工作原理和检修方法

ATX开关电源的工作原理和检修方法
随着电脑的逐渐普及和深入到家庭,显示器已经成为维修界的一个亮点,ATX开关电源又将成为维修界的一个新的亮点。本文以市面上最常见的LWT2005型开关电源供应器为例,详细讲解ATX开关电源的工作原理和检修方法,对其它型号的开关电源供应器,也起到一个抛砖引玉的作用。
  一、概述
  计算机电源的主要功能是向计算机系统提供所需的直流电源。一般计算机电源所采用的都是双管半桥式无工频变压器的脉宽调制变换型稳压电源。它将市电整流成直流后,通过变换型振荡器变成频率较高的矩形或近似正弦波电压,再经过高频整流滤波变成低压直流电压的目的。电源功率一般为250300W,通过高频滤波电路输出六组直流电压:+5V25A)、-5V0.5A)、+12V(10A)-12V1A)、+3.3V14A)、+5VSB0.8A)。为防止负载过流或过压损坏电源,在交流市电输入端设有保险丝,在直流输出端设有过载保护电路。
  二、工作原理
  ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制控制电路、PS信号PG信号产生电路、主电源电路及多路直流稳压输出电路、自动稳压稳流与保护控制电路。参照实物绘出电路图,如图1所示。
  2.1、输入整流滤波电路
  只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0R1C2组成Π型滤波器,滤除市电电网中的高频干扰。C3C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。
  2.2、高压尖峰吸收电路
  D18R004C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03C极尖峰电压,使Q03免遭损坏。
  2.3、辅助电源电路
  整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级~②绕组送往辅助电源开关管Q03c极,另一路经启动电阻R002Q03b极提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级~②绕组,使T3~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02D8R06送往Q03b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4K端输出至IC3脚电压变化率几乎为零,使IC3内发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06R003Q03be极等效电阻对电容C02充电,随着C02充电电压增加,流经Q03b极电流逐渐减小,使~④反馈绕组上的感应电动势开始下降,最终使T3~④反馈绕组感应电动势反相(上负下正),并与C02电压叠加后送往Q03b极,使b极电位变负,使开关管Q03迅速截止。
  开关管Q03截止时,T3~④反馈绕组、D7R01R02R03R04R05C09IC3IC4组成再起振支路。当Q03导通的过程中,T3初级绕组将磁能转化为电能为电路中各元器件提供电压,同时T3反馈绕组的端感应出负电压,D7导通、Q1截止;当Q03截止后,T3反馈绕组的端感应出正电压,D7截止,T3次级绕组两个输出端的感应电动势为正,T3储存的磁能转化为电能经D50C04整流滤波后为IC4提供一个变化的电压,使IC3脚导通,IC3内发光二极管流过的电流增大,使光敏三极管发光,从而使Q1导通,给开关管Q03b极提供启动电流,使开关管Q03由截止转为导通。同时正反馈支路C02的充电电压经T3反馈绕组、R003Q03be极等效电阻、R06形成放电回路。随着C41充电电流逐渐减小,开关管Q03Ub电位上升,当Ub电位增加到Q03be极的开启电压时,Q03再次导通,又进入下一个周期的振荡。如此循环往复,构成一个自激多谐振荡器。
  Q03饱和期间,T3次级绕组输出端的感应电动势为负,整流二级管D9D50截止,流经初级绕组的导通电流以磁能的形式储存在T3辅助电源变压器中。当Q03由饱和转向截止时,次级绕组两个输出端的感应电动势为正,T3储存的磁能转化为电能经D9D50整流输出。其中D50整流输出电压经三端稳压器7805稳压,再经电感L7滤波后输出+5VSB。若该电压丢失,主板就不会自动唤醒ATX电源工作。D9整流输出电压供给IC2(脉宽调制集成电路KA7500B)的12脚(电源输入端),该芯片第14脚输出稳压+5V,提供ATX开关电源控制电路中相关元器件的工作电压。
  T2为主电源激励变压器,当副电源开关管Q03导通时,Ic流经T3初级~②绕组,使T3~④反馈绕组产生感应电动势(上正下负),并作用于T2初级~③绕组,产生感应电动势(上负下正),经D5D6C8R5Q02b极提供启动电流,使主电源开关管Q02导通,在回路中产生电流,保证了整个电路的正常工作;同时,在T2初级~④反馈绕组产生感应电动势(上正下负)D3D4截止,主电源开关管Q01处于截止状态。在电源开关管Q03截止期间,工作原理与上述过程相反,即Q02截止,Q01工作。其中,D1D2为续流二极管,在开关管Q01Q02处于截止和导通期间能提供持续的电流。这样就形成了主开关电源它激式多谐振电路,保证了T2初级绕组电路部分得以正常工作,从而在T2次级绕组上产生感应电动势送至推动三极管Q3Q4c极,保证整个激励电路能持续稳定地工作,同时,又通过T2初级绕组反作用于T1主开关电源变压器,使主电源电路开始工作,为负载提供+3.3V±5V±12V工作电压。
二、工作原理
  2.4PS信号和PG信号产生电路以及脉宽调制控制电路
  微机通电后,由主板送来的PS信号控制IC2(脉宽调制控制端)电压,待机时,主板启动控制电路的电子开关断开,PS信号输出高电平3.6V,经R37到达IC1(电压比较放大器LM339N)的脚(启动端),由内部经IC1脚,对C35进行充电,同时IC1脚经R41送出一个比较电压给IC2脚,IC2脚电压由零电位开始逐渐上升,当上升的电压超过3V时,封锁IC2⑧、11脚的调制脉宽电压输出,使T2推动变压器、T1主电源开关变压器停振,从而停止提供+3.3V±5V±12V等各路输出电压,电源处于待机状态。受控启动后,PS信号由主板启动控制电路的电子开关接地,IC1脚为低电平(0V,IC2脚变为低电平(0V),此时允许11脚输出脉宽调制信号。IC213脚(输出方式控制端)接稳压+5V (IC2内部稳压输出+5V电压),脉宽调制器为并联推挽式输出,11脚输出相位差180度的脉宽调制信号,输出频率为IC2脚外接定时阻容元件R30C30的振荡频率的一半,控制推动三极管Q3Q4c极连接的T2次级绕组的激励振荡。T2初级它激振荡产生的感应电动势作用于T1主电源开关变压器的初级绕组,从T1次级绕组的感应电动势整流输出+3.3V±5V±12V等各路输出电压。
  D12D13以及C40用于抬高推动管Q3Q4e极电平,使Q3Q4b极有低电平脉冲时能可靠截止。C35用于通电瞬间封锁IC211脚输出脉宽调制信号脉冲,ATX电源通电瞬间,由于C35两端电压不能突变,IC2脚输出高电平,11脚无驱动脉冲信号输出。随着C35的充电,IC2的启动由PS信号电平高低来加以控制,PS信号电平为高电平时IC2关闭,为低电平时IC2启动并开始工作。
  PG产生电路由IC1(电压比较放大器LM339N)、R48C38及其周围元件构成。待机时IC2脚(反馈控制端)为零电平,经R48使 IC1脚正端输入低电位,小于11脚负端输入的固定分压比,13脚(PG信号输出端)输出低电位,PG向主机输出零电平的电源自检信号,主机停止工作处于待机状态。受控启动后IC2脚电位上升,IC1脚控制电平也逐渐上升,一旦IC1脚电位大于11脚的固定分压比,经正反馈的迟滞比较放大器,13脚输出的PG信号在开关电源输出电压稳定后再延迟几百毫秒由零电平起跳到+5V,主机检测到PG电源完好的信号后启动系统,在主机运行过程中若遇市电停电或用户执行关机操作时,ATX开关电源+5V输出电压必然下跌,这种幅值变小的反馈信号被送到IC2脚(电压取样放大器同相输入端),使IC2脚电位下降,经R48使IC1脚电位迅速下降,当脚电位小于11脚的固定分压电平时,IC113脚将立即从+5V下跳到零电平,关机时PG输出信号比ATX开关电源+5V输出电压提前几百毫秒消失,通知主机触发系统在电源断电前自动关闭,防止突然掉电时硬盘的磁头来不及归位而划伤硬盘。
  2.5、主电源电路及多路直流稳压输出电路
  插图75
  微机受控启动后,PS信号由主板启动控制电路的电子开关接地,允许IC211脚输出脉宽调制信号,去控制与推动三极管Q3Q4c极相连接的T2推动变压器次级绕组产生的激励振荡脉冲。T2的初级绕组由它激振荡产生的感应电动势作用于T1主电源开关变压器的初级绕组,从T1次级①②绕组产生的感应电动势经D20D28整流、L2(功率因素校正变压器,以它为主来构成功率因素校正电路,简称PFC电路,起自动调节负载功率大小的作用。当负载要求功率很大时,则PFC电路就经过L2来校正功率大小,为负载输送较大的功率;当负载处于节能状态时,要求的功率很小,PFC电路通过L2校正后为负载送出较小的功率,从而达到节能的作用。)第绕组以及C23滤波后输出—12V电压;从T1次级③④⑤绕组产生的感应电动势经D24D27整流、L2绕组及C24滤波后输出—5V电压;从T1次级③④⑤绕组产生的感应电动势经D21(场效应管)、L2②③绕组以及C25C26C27滤波后输出+5V电压;从T1次级③⑤绕组产生的感应电动势经L6L7D23(场效应管)、L1以及C28滤波后输出+3.3V电压;从T1次级⑥⑦绕组产生的感应电动势经D22(场效应管)、L2绕组以及C29滤波后输出+12V电压。其中,每两个绕组之间的R5Ω/1/2W)、C(103)组成尖峰消除网络,以降低绕组之间的反峰电压,保证电路能够持续稳定地工作。
  2.6、自动稳压稳流控制电路
  (1+3.3V自动稳压电路
  IC5(精密稳压电路TL431开关型直流稳压电源)、Q2R25R26R27R28R18R19R20D30D31D23(场效应管)、R08C28C34等组成+3.3V自动稳压电路。
  当输出电压(+3.3V)升高时,由R25R26R27取得升高的采样电压送到IC5G端,使UG电位上升,UK电位下降,从而使Q2导通,升高的+3.3V电压通过Q2ec极,R18D30D31送至D23S极和G极,使D23提前导通,控制D23D极输出电压下降,经L1使输出电压稳定在标准值(+3.3V)左右,反之,稳压控制过程相反。
  (2+5V+12V自动稳压电路
  IC2脚电压取样放大器正、负输入端,取样电阻R15R16R33R35R69R47R32构成+5V+12V自动稳压电路。
  当输出电压升高时(+5V+12V),由R33R35R69并联后的总电阻取得采样电压送到IC2脚和脚基准电压相比较,输出误差电压与芯片内锯齿波产生电路的振荡脉冲在PWM比较放大器中进行比较放大,使11脚输出脉冲宽度降低,输出电压回落至标准值的范围内,反之稳压控制过程相反,从而使开关电源输出电压保持稳定。
  (3+3.3V+5V+12V自动稳压电路
  IC4(精密稳压电路TL431)、Q1R01R02R03R04R05R005D7C09C41等组成+3.3V+5V+12V自动稳压电路。
  当输出电压升高时,T3次级绕组产生的感应电动势经D50C04整流滤波后一路经R01限流送至IC3脚,另一路经R02R03获得增大的取样电压送至IC4G端,使UG电位上升,UK电位下降,从而使IC4内发光二极管流过的电流增加,使光敏三极管导通,从而使Q1导通,同时经负反馈支路R005C41使开关三极管Q03e极电位上升,使得Q03b极分流增加,导致Q03的脉冲宽度变窄,导通时间缩短,最终使输出电压下降,稳定在规定范围之内。反之,当输出电压下降时,则稳压控制过程相反。
  1VIC21516脚电流取样放大器正、负输入端,取样电阻R51R56R57构成负载自动稳流电路。负端输入15脚接稳压+5V,正端输入16脚, 该脚外接的R51R56R57与地之间形成回路,当负载电流偏高时,由R51R56R57支路取得采样电流送到IC215脚和16脚基准电流相比较,输出误差电流与芯片内锯齿波产生电路的振荡脉冲在PWM比较放大器中进行比较放大,使11脚输出脉冲宽度降低,输出电流回落至标准值的范围之内,反之稳流控制过程相反,从而使开关电源输出电流保持稳定。
三、检修的基本方法与技巧
  计算机ATX开关电源与日常生活中彩电的开关电源显著的区别是:前者取消了传统的市电按键开关,采用新型的触点开关,并且依靠+5VSBPS控制信号的组合来实现电源的自动开启和自动关闭。主机在通电的瞬间,主机电源会向主板发送一个Power Good(简称PG)信号,如果主机电源的输入电压在额定范围之内,输出电压也达到最低检测电平(+5V输出为4.75V以上),并且让时间延迟约100ms500ms后(目的是让电源电压变得更加稳定),PG电路就会发出电源正常的信号,接着CPU会产生一个复位信号,执行BIOS中的自检,主机才能正常启动。+5VSB是供主机系统在ATX待机状态时的电源,以及开启和关闭自动管理模块及其远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫线由ATX插头(2)⑨脚引出。PS为主机开启或关闭电源以及网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源 ,待机时的电压值各不相同,常见的待机电压值为3V3.6V4.6V。当按下主机面板的POWER电源开关或实现网络唤醒远程开机时,受控启动后PS由主板的电子开关接地,使用绿线从ATX插头14脚输入。PG是供主板检测电源好坏的输出信号,使用灰线由ATX插头脚引出,待机状态为低电平(0V),受控启动电压输出稳定的高电平(+5V)。
  脱机带电检测ATX电源 ,首先测量在待机状态下的PSPG信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB外,不输出其它任何电压。其次是将ATX开关电源进行人工唤醒,方法是:用一根导线把ATX插头14脚(绿线)PS信号与任一地端(黑线3713151617)中的任一脚短接,这一步是检测的关键(否则,通电时开关电源风扇将不旋转,整个电路无任何反应,导致无法检修或无法判断其故障部位和质量好坏)。将ATX电源由待机状态唤醒为启动受控状态,此时PS信号变为低电平,PG+5VSB信号变为高电平,这时可观察到开关电源风扇旋转。为了验证电源的带负载能力,通电前可在电源的+12V输出插头处再接一个开关电源风扇或CPU电源风扇,也可在+5V与地之间并联一个4Ω/10W左右的大功率电阻做假负载。然后通电测量各路输出电压值是否正常,如果正常且稳定,则可放心接上主机内各部件进行使用;如发现不正常,则必须重新认真检查电路,此时绝对不允许与主机内各部件连接,以免通电造成严重的经济损失。
  上述操作亦可作为单独选购ATX开关电源脱机通电验证质量好坏的方法。

本文发布于:2024-09-22 10:39:05,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/385706.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:输出   电压   电路   电源   信号   电流   产生   开关
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议