第二章 燃烧系统讲解

第二章燃烧系统
第一节燃烧概况
一概述
燃烧方式采用从美国阿尔斯通能源公司引进的摆动式四角切圆燃烧技术。
本燃烧设备燃煤为神府东胜煤,采用中速磨煤机、冷一次风机、正压直吹式制粉系统设计,煤粉燃烧器为四角布置、切向燃烧、摆动式燃烧器。燃烧器共设置六层煤粉喷嘴,锅炉配置6台HP1003型中速磨煤机,每台磨的出口由四根煤粉管接至炉膛四角的同一层煤粉喷嘴,锅炉MCR和ECR负荷时均投5层,另一层备用,煤粉细度R75=25%。
燃烧方式采用低NOx同轴燃烧系统(LNCFS)。通过分析煤粉燃烧时NOx的生成机理,低NOx煤粉燃烧系统设计的主要任务是减少挥发份氮转化成NOx,其主要方法是建立早期着火和使用控制氧量的燃料/空气分段燃烧技术。
LNCFS的主要组件为:
a.紧凑燃尽风(CCOFA);
b.可水平摆动的分离燃尽风(SOFA);
c.预置水平偏角的辅助风喷嘴(CFS);
d.强化着火(EI)煤粉喷嘴。
LNCFS在降低NOx排放的同时,着重考虑提高锅炉不投油低负荷稳燃能力和燃烧效率。通过技术的不断更新,LNCFS在防止炉内结渣、高温腐蚀和降低炉膛出口烟温偏差等方面,同样具有独特的效果。
主风箱设有6层强化着火煤粉喷嘴,在煤粉喷嘴四周布置有燃料风(周界风)。在每相邻2层煤粉喷嘴之间布置有1层辅助风喷嘴,其中包括上下2只偏置的CFS喷嘴,1只直吹风喷嘴。在主风箱上部设有2层CCOFA(Closed-coupled OFA,紧凑燃尽风)喷嘴,在主风箱下部设有1层UFA (Underfire Air,火下风)喷嘴。参见图1:煤粉燃烧器布置图。
在主风箱上部布置有SOFA(Separated OFA,分离燃尽风)燃烧器,包括5层可水平摆动的分离燃尽风(SOFA)喷嘴。参见图2:SOFA燃烧器布置图。
连同煤粉喷嘴的周界风,每角主燃烧器和SOFA燃烧器各有二次风挡板25组,均由电动执行器单独操作。为满足锅炉汽温调节的需要,主燃烧器喷嘴采用摆动结构,由内外连杆组成一个摆动系统,由一台气动执行器集中带动作上下摆动。SOFA燃烧器由一台电动执行器集中带动作上下摆动。上述执行器
均采用进口的角行程结构,其特点是结构紧凑,控制简单,能适应频繁调节。
旋转喷嘴在燃烧器二次风室中配置了三层共12支轻油,布置在相连2层煤粉喷嘴之间的1只直吹二次风喷嘴内,油采用Y型蒸汽雾化方式,轻油高能电子点火装置点燃轻油,轻油点燃煤粉,燃油容量按30%MCR负荷设计。燃烧器采用水冷套结构。
二设计特点
1 LNCFS的技术特点:
LNCFS在降低NOx排放的同时,着重考虑提高锅炉不投油低负荷稳燃能力和燃烧效率。通过技术的不断更新,LNCFS在防止炉内结渣、高温腐蚀和降低炉膛出口烟温偏差等方面,同样具有独特的效果。
a. LNCFS具有优异的不投油低负荷稳燃能力。
LNCFS设计的理念之一是建立煤粉早期着火,为此阿尔斯通开发了多种强化着火(EI)煤粉喷嘴,能大大提高锅炉不投油低负荷稳燃能力。根据设计、校核煤种的着火特性,选用合适的煤粉喷嘴,在煤种允许的变化范围内确保煤粉及时着火,稳燃,燃烧器状态良好,并不被烧坏。
b. LNCFS具有良好的煤粉燃尽特性。
煤粉的早期着火提高了燃烧效率。
LNCFS通过在炉膛的不同高度布置CCOFA和SOFA,将炉膛分成三个相对独立的部分:初始燃烧区,NOx还原区和燃料燃尽区。在每个区域的过量空气系数由三个因素控制:总的OFA风量,CCOFA 和SOFA风量的分配以及总的过量空气系数。这种改进的空气分级方法通过优化每个区域的过量空气
c. LNCFS
LNCFS 采用预置水平偏角的辅助风喷嘴(CFS )设计,在燃烧区域及上部四周水冷壁附近形成富空气区,能有效防止炉内结渣和高温腐蚀。
d. LNCFS 在降低炉膛出口烟温偏差方面具有独特的效果。
阿尔斯通已经完成了一项广泛的研究计划,目的是寻求发现造成切向燃烧锅炉中炉膛出口烟温偏差的原因和解决方法。研究结果表明,对燃烧系统的改进能减小和调整切向燃煤机组炉膛出口烟温偏差现象。阿尔斯通在新设计的锅炉上已经采用可水平摆动调节的SOFA 喷嘴设计来控制炉膛出口烟温偏差。该水平摆动角度在热态调整时确定后,就不用再调整。 2 强化着火煤粉喷嘴:
强化着火(E I )煤粉喷嘴能使火焰稳定在喷嘴出口一定距离内,使挥发份在富燃料的气氛下快速着火,保持火焰稳定,从而有效降低NO X 的生成,延长焦碳的燃烧时间。参见图3:强化着火(E I )
3 带同心切圆燃烧方式(CFS)的多隔仓辅助风设计。
在每相邻2层煤粉喷嘴之间布置有1层辅助风喷嘴,其中包括2只CFS(偏置风)喷嘴,1只直吹风喷嘴。参见图4:同心切圆(CFS)燃烧方式。前后墙夹角分别是48°和39°。
采用同心切圆(CFS)燃烧方式,部分二次风气流在水平方向分级,在始燃烧阶段推迟了空气和煤粉的混合,NOx形成量少。由于一次风煤粉气流被偏转的二次风气流(CFS)裹在炉膛中央,形成富燃料区,在燃烧区域及上部四周水冷壁附近则形成富空气区,这样的空气动力场组成减少了灰渣在水冷壁上的沉积,并使灰渣疏松,减少了墙式吹灰器的使用频率,提高了下部炉膛的吸热量。水冷壁附近氧量的提高也降低了燃用高硫煤时水冷壁的高温腐蚀倾向。
4 UFA(Underfire Air,火下风)喷嘴设计。
在每个主燃烧器最下部采用UFA喷嘴设计,通入部分空气,以降低灰渣含碳量。
图4:同心切圆(CFS)燃烧方式布置:
5 采用可水平摆动调节的SOFA喷嘴设计控制炉膛出口烟温偏差。
炉膛出口烟温偏差是炉膛内的流场造成的。通过对目前运行的燃煤机组烟气温度和速度数据分析发现,在炉膛垂直出口断面处的烟气流速对烟温偏差的影响要比烟温的影响大得多。这提示,烟温偏差是一个空气动力现象。炉膛出口烟温偏差与旋流指数之间存在着联系。该旋流指数代表着燃烧产物烟气离开炉膛出口截面时的切向动量与轴向动量之比(较高的旋流指数意味着较快的旋流速
度)。旋流值可以通过一系列手段减小,诸如减小气流入射角,布置紧凑燃尽风(CCOFA)喷嘴和分离燃尽风(SOFA)喷嘴,SOFA反切一定角度,以及增加从燃烧器区域至炉膛出口的距离等,使进入燃烧器上部区域气流的旋转强度得到减弱乃至被消除。图5表示了可水平调整摆角的喷嘴设计,摆角可水平调整到±15°。SOFA的水平调整对燃烧效率也有影响,要通过燃烧调整得到一个最佳的角度。
Vertical Tilt Drive Mechanism
Horizontal Adjustment Mechanism
Adjustable
Air Nozzle Tip
图5:可水平调整摆角的喷嘴设计
6 锅炉不同负荷时燃烧器的投入方式如下:
锅炉负荷
80%—100%
60%—100%
45%—80%
35%—60%
10%—40%
0—30%
注:1台磨运行对应燃烧器同层4只煤粉喷嘴投运。
7 本工程组织良好炉膛空气动力场,防止火焰直接冲刷水冷壁,从而防止炉内结渣和高温腐蚀的主要措施有:
a  合适的炉膛热力参数设计;
b  带同心切圆燃烧方式(CFS)的多隔仓辅助风设计;
c  合理的燃烧器各层一次风间距。
8 燃烧器的设计、布置考虑降NOx的排放浓度不超过400mg/Nm3(O2=6%)的措施有:
a  带同心切圆燃烧方式(CFS)的多隔仓辅助风设计;
b  采用CCOFA和SOFA实现对燃烧区域过量空气系数的多级控制;
c  强化着火(E I)煤粉喷嘴设计。
9 燃烧器的设计、布置考虑实现不投油最低稳燃负荷的措施有:
a  强化着火(E I)煤粉喷嘴设计;
b  低负荷时相临两层煤粉喷嘴投入运行;
c  煤粉细度达到设计值。
10 为了确保燃烧器喷嘴摆动这一调温手段的正常实施,本燃烧设备适当增加了各传动配合件之间的间隙,并从工艺上采取措施,严格控制摆动喷嘴的形位公差,同时适当增加传动件的刚性和强度。
需要指出的是,保证燃烧器正常摆动的关键,已不是设计问题,而是对现场安装的配合问题了。这是由于燃烧器在工厂装配喷嘴时处于平放的状态,无法将喷嘴实际角度正确地调节到设计的工作

本文发布于:2024-09-21 05:45:13,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/381245.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

下一篇:水射流术语
标签:喷嘴   燃烧   煤粉   炉膛   燃烧器   设计
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议