新能源汽车驱动电机壳体冷却结构设计及热仿真分析

新能源汽车驱动电机壳体冷却结构设计及热仿真分析
作者:丁永根 徐天稷 张南 海露
来源:《时代汽车》2020年第16期
        摘 要:本文针对新能源汽车驱动电机运行过程中的电机温升问题,重点分析了驱动电机壳体热量传递方式,以及电机壳体冷却通道结构设计,分析了冷却通道截面尺寸与冷却通道沿程阻力损失之间的关系。同时,借助ANSYS热仿真技术,对螺旋式冷却结构的驱动电机温升问题进行了热仿真分析。
        关键词:新能源汽车 永磁同步电机
        当前,在国家节能减排政策的支持下,新能源电动汽车产业获得了迅猛发展,传统燃油汽车向电动汽车方向发展已经一种必然趋势。永磁同步电机由于具备高功率密度、高效率、高可靠性与安全性,已被广泛应用于新能源电动汽车的驱动系统中。通常,新能源电动汽车电机运行环境温度较高(通常高于70℃),同时还要求驱动电机必须具备较强的过载能力、动态响应能力,这就会带来电机温升问题。而较高的电机温升会影响驱动电机运行的可靠性和使用寿命,直接影响整车的动力性能,因此,如何更好的解决新能源电动汽车运行过程中的电机的温升问题,保证驱动电机运行的可靠性,合理设计驱动电机冷却系统,就具有十分重要的意义。
        1 永磁同步电机热量传递方式
机壳
        永磁同步电机运行过程中,由电机绕组铜损耗和定子铁芯、转子铁芯的铁损耗产生的热量,其在电机内部传递的路径如图1所示。经分析,电机内部由损耗产生的热量,大部分通过热传导的方式,按照定子绕组→定子铁芯→冷却介质的传递路线,最终通过冷却介质传递到机壳外部。此外,还有极少部分热量通过热辐射的方式由机壳壳体辐射到周围空气介质中,这部分热量所占比例较少,对电机散热的贡献值较小。由此可见,如何解决好热量由定子绕组→冷却介质的传递,就成为了解决电机温升问题的关键。
        2 驱动电机壳体冷却通道结构设计
        针对热量在电机内部的传递方式,本文设计了一款螺旋式冷却结构的电机壳体,其结构如图2所示。冷却介质由壳体底部进水口流入,在壳体内螺旋循环上升4圈以后,从壳体右侧出水口流出壳体,完成冷却介質在壳体内部的一次循环过程。冷却通道结构设计时考虑到整车端液压泵的压力及冷却介质沿程阻力损失,在螺旋通道转角设计时过渡圆角尽可能大,这样既可以减少冷却介质在循环过程中的沿程阻力,又可以在生产铸造过程中保证金属液顺利充填型腔,避免冷却浇道内形成卷气、夹渣等铸造缺陷。

本文发布于:2024-09-20 17:58:18,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/374663.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:电机   冷却   壳体
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议