Ku波段自偏置器件用双相复合铁氧体材料及其制备方法


ku波段自偏置器件用双相复合铁氧体材料及其制备方法
技术领域
1.本发明属于铁氧体材料制备技术领域,特别涉及一种ku波段自偏置器件用双相复合铁氧体材料及其制备方法。


背景技术:



2.基于铁氧体旋磁特性所设计的环行器、移相器等微波器件具有承载功率高、损耗低等特点,广泛应用于雷达、无线通信的相控阵系统之中;并且随着电子信息技术的不断发展,微波器件小型轻量化、集成化成为各国研究的焦点。ku波段作为微波频段中军用与民用最为常用的波段,具有接收天线效率高、所需天线口径小、抗地面干扰能力强、分辨率高等特点,应用于该波段微波器件所用的旋磁铁氧体多为li系与ni系尖晶石铁氧体。其中ni系尖晶石铁氧体具有低各向异性常数、高密度、低铁磁共振线宽等特点,但所设计出的微波器件通常需要外加磁钢提供偏置场,大大增加了器件的重量和体积,不利于整机系统小型轻量化、集成化的发展。
3.在旋磁铁氧体中,m型六角铁氧体(srm)具有高矫顽力、高各向异性场和剩磁比。高矫顽力可以保持六角铁氧体的永磁特性;高剩磁比可以使磁矩倾向于强各向异性方向进动,进而使磁矩在无外加稳恒磁场或稳恒磁场很小的情况下与微波/毫米波作用产生铁磁共振,实现微波器件的自偏置特性,摆脱外置磁钢的束缚,显著减小微波器件的重量和体积。但m型六角铁氧体高的各向异性场导致其应用频率较高,通常在ka波段及以上,无法应用于ku波段微波器件的设计。因此,本发明开展ku波段自偏置器件用双相复合铁氧体材料研制,对实现ku波段微波器件自偏置特性具有十分重要的意义。
4.针对目前ku波段自偏置器件用微波铁氧体材料的研究,俄罗斯南乌拉尔国立大学(j.energy.chem.,2019,69:667-676)公布的一种in
3+
取代锶铁氧体性能指标:比饱和磁化强度σs》49.1emu/g,剩磁比mr/ms》0.41,各向异性场ha》12.02koe,矫顽力hc》2520oe,铁磁共振线宽δh未公布,虽然材料兼具适宜的ha与hc,但mr/ms较低,不利于实现器件的自偏置特性;电子科技大学(ceram.int.,2019,45(4):4535-4539)公布的一种zn
2+-sn
4+
取代六角铁氧体材料性能指标:各向异性场ha》7.5koe,矫顽力hc》458oe,剩磁比mr/ms》0.33,材料的hc与mr/ms较低;美国东北大学(ieee.trans.magn.,2006,42(10):3353-3355)公布的一种sc
3+
取代六角铁氧体性能指标:剩磁比mr/ms=0.83,矫顽力hc=2230oe,铁磁共振线宽δh=955oe,各向异性场ha未公布,由于材料的δh较大,致使所设计的微波器件的插损也较大;安徽建筑大学(j.alloys.cmpd.,2020,825:154072)公布的一种mg
2+-ti
4+
联合掺杂ba
0.5
ca
0.5
fe
12-2x
mg
x
ti
xo19
铁氧体材料性能参数为:比饱和磁化强度σs》61.63emu/g,矫顽力hc》1287oe,各向异性场ha》13.53koe,剩磁比mr/ms与铁磁共振线宽δh未公布,材料的hc较小;专利cn108424137a公布的一种六角铁氧体材料性能参数:饱和磁化强度4πms=4727gs,剩磁比mr/ms=0.92,各向异性场ha=15.2koe,铁磁共振线宽δh=366oe,虽然材料具有较高的mr/ms,但材料的ha和δh较大;专利cn112047731a公布的一种la
3+-sc
3+
取代钡铁氧体性能参数:饱和磁化强度4πms=3840gs,剩余磁化强度4πmr=3460gs,矫顽力hc=620oe,各向异
性场ha=13.9koe,材料的hc较小。由此可知,通过离子取代难以实现微波铁氧体材料在降低各向异性场的同时兼顾高矫顽力与剩磁比。此外,安徽理工大学(j.am.ceram.soc.,2019,103:5076-5085)公布的一种srfe
12o19
/nife2o4复合铁氧体材料性能指标:比饱和磁化强度σs=42.1a
·
m2·
kg-1
,剩磁比mr/ms=0.41,矫顽力hc=945oe,各向异性场ha未公布,材料的mr/ms和hc较低;广西大学(j.mater.sci.-mater.electro.,2018,29:13903-13913)公布的一种nife2o4/srco
0.2
fe
11.8o19
复合铁氧体材料性能指标为:剩磁比mr/ms=0.46、矫顽力hc=1200oe、有效各向异性常数k
eff
=8
×
104erg/g,虽然引入低各向异性的软磁有效调节了复合材料的各向异性,但材料的mr/ms与hc较低。
5.基于上述,现有ku波段自偏置器件用铁氧体材料难以兼具适宜各向异性场、高矫顽力和剩磁比特性。本发明提供一种ku波段自偏置器件用双相复合铁氧体材料及其制备方法,结合硬磁相高hc和mr/ms特性与软磁相低损耗特性,研制兼具适宜各向异性场、高矫顽力和剩磁比、低铁磁共振线宽特性的双相复合铁氧体材料。


技术实现要素:



6.本发明的目的在于,针对目前技术所涉及的ku波段自偏置器件用铁氧体材料难以兼具适宜各向异性场、高矫顽力和剩磁比特性,提供了一种ku波段自偏置器件用双相复合铁氧体材料及其制备方法。本发明复合铁氧体材料兼具适宜各向异性场(ha≤13.83koe)、高矫顽力(hc≥3346oe)和剩磁比(mr/ms≥0.89)、低铁磁共振线宽(δh≤344oe)特性,适用于ku波段自偏置器件设计。
7.本发明的核心思想在于:结合硬磁相高hc和mr/ms特性与软磁相低损耗特性。主配方中硬磁相采用高性能calaco取代srm铁氧体,软磁相采用低损耗nicuzn铁氧体。首先,基于各向异性补偿机制,采用低各向异性场的软磁相对高各向异性场的硬磁相进行补偿,调控双相复合铁氧体材料的各向异性场。其次,软磁相与硬磁相间的交换耦合作用可使双相复合铁氧体的磁矩有序排列,提高双相复合铁氧体材料的剩磁比。第三,在制备的过程中,将软磁相以原料的形式加入到硬磁相预烧料中,利用静电空间位阻机制在二磨的过程中加入分散剂isobam(异丁烯-马来酸酐共聚物)调控颗粒表面电位,使软磁相原料能够均匀地分布在硬磁相颗粒周围;在二次预烧的过程中,软磁相原料会在硬磁相颗粒表面晶化形成软磁相,并与硬磁相表面的悬挂键结合,同时两相间所形成的非共格相界具有较大的成分起伏,会对双相复合铁氧体反磁化过程中畴壁位移产生阻力,提高双相复合铁氧体材料的矫顽力。第四,cu
2+
能在烧结过程中形成液相,实现双相复合铁氧体致密化烧结,降低双相复合铁氧体材料的铁磁共振线宽。第五,对于掺杂剂,引入caco3、sio2、cuo、h3bo3,通过促晶/阻晶影响机制,调控双相复合铁氧体晶粒与晶界特性,窄化粒度分布,提高取向度,改善烧结体的微观性能与磁性能;同时,由于cu
2+
高的扩散系数,cuo的引入一方面可以修复nicuzn铁氧体晶格,另一方面晶粒与晶界间所形成的cu
2+
浓度梯度会对双相复合铁氧体反磁化过程中畴壁位移产生钉扎作用,提高矫顽力。即:通过各向异性补偿机制的控制,引入低各向异性nicuzn铁氧体减小双相复合铁氧体各向异性场;通过两次预烧,利用交换耦合与非共格相界磁化阻力作用实现双相复合铁氧体高的剩磁比与矫顽力;通过nicuzn主配方中cu
2+
的助熔作用,提高双相复合铁氧体致密化程度,降低铁磁共振线宽;通过静电空间位阻机制的作用,在二磨过程中引入isobam阻止颗粒的团聚,提高颗粒分布的均匀性;通过cuo作为
掺杂剂二次添加所产生的畴壁钉扎作用,实现双相复合铁氧体矫顽力的提高;通过caco3、cuo、sio2、h3bo3掺杂剂阻晶/促晶作用机制,调控晶粒晶界特性,提高取向度,改善双相复合铁氧体的微结构与磁特性。
8.为实现上述目的,本发明采用的技术方案如下:
9.一种ku波段自偏置器件用双相复合铁氧体材料,所述双相复合铁氧体材料包括srm铁氧体、nicuzn铁氧体和掺杂剂;所述srm铁氧体的组分为:3.66~10.68mol%srco3、0.66~5.02mol%caco3、2.47~8.52mol%la2o3、1.36~6.37mol%co2o3、76.43~84.83mol%fe2o3,所述nicuzn铁氧体的组分为:24mol%~36mol%nio、3~8mol%cuo、8~28mol%zno、45mol%~48mol%fe2o3,nicuzn铁氧体与srm铁氧体的重量比为1:(0.11~9);
10.掺杂剂占复合铁氧体材料的重量百分比为:0.1~0.4wt.%sio2、0.3~1.2wt.%h3bo3、0.5~1.8wt.%caco3、0.4~1.0wt.%cuo、0.4~1.2wt.%isobam、0.1wt.%~0.7wt.%c
36h70
o4zn。
11.一种ku波段自偏置器件用双相复合铁氧体材料的制备方法,包括以下步骤:
12.步骤1、配料
13.以srco3、caco3、la2o3、co2o3、fe2o3为原料,按照“3.66~10.68mol%srco3、0.66~5.02mol%caco3、2.47~8.52mol%la2o3、1.36~6.37mol%co2o3、76.43~84.83mol%fe2o
3”的比例称料,混料,得到srm铁氧体初始粉体;
14.步骤2、一次球磨
15.将步骤1得到的初始粉体在球磨机内混合均匀,球磨时间为5~18h;
16.步骤3、一次预烧
17.将步骤2得到的一次球磨料烘干,过筛,在1080~1360℃下进行预烧,升温速率为0.8~1.7℃/min,保温时间为1~6h,得到srm铁氧体预烧料;
18.步骤4、二次球磨
19.以nio、zno、cuo、fe2o3为原料,按照“24mol%~36mol%nio、3~8mol%cuo、8~28mol%zno、45mol%~48mol%fe2o
3”的比例配料,得到nicuzn铁氧体;按照nicuzn铁氧体与srm铁氧体初始粉体的重量比为1:(0.11~9)的比例,将nicuzn铁氧体加入srm铁氧体预烧料中,再加入占复合铁氧体材料的重量百分比为0.4~1.2wt.%的isobam,在球磨机内混合均匀,球磨时间为6~19h;
20.步骤5、二次预烧
21.将步骤4得到的二次球磨料烘干,在900~1200℃下进行预烧,预烧时间为1~6h;
22.步骤6、掺杂
23.在步骤5得到的二次预烧料中加入掺杂剂,掺杂剂占复合铁氧体材料的重量百分比为:0.1~0.4wt.%sio2、0.3~1.2wt.%h3bo3、0.5~1.8wt.%caco3、0.4~1.0wt.%cuo;
24.步骤7、三次球磨
25.将步骤6得到的混合粉料在球磨机中球磨13~25h混合均匀,粉料粒度控制在0.6~1.0μm之间;
26.步骤8、成型
27.将步骤7得到的三次球磨料脱水,脱水后浆料含水量控制在14wt%~35wt%之间,然后加入占复合铁氧体材料的重量百分比为0.1wt.%~0.7wt.%的c
36h70
o4zn,在磁场成型
机下压制成型,成型磁场为1.3~1.6t,成型压力为85~130mpa;
28.步骤9、烧结
29.将步骤8压制得到的坯件进行烧结,烧结温度为1080~1230℃,保温时间为3~8h,烧结完成后,即可得到ku波段自偏置器件用双相复合铁氧体材料。
30.对步骤9得到的双相复合铁氧体材料进行性能测试:饱和磁化强度4πms、剩余磁化强度4πmr、剩磁比mr/ms、矫顽力hc采用美国lakeshore 8604型振动样品磁强计测试,铁磁共振线宽δh采用美国agilent n5227a矢量网络分析仪测试,各向异性场ha通过基特尔公式推导得出。
31.本发明制备的双相复合铁氧体材料最终技术指标如下:
32.饱和磁化强度4πms≥4450gs;
33.剩磁比mr/ms≥0.89;
34.矫顽力hc≥3346oe;
35.各向异性场ha≤13.83koe;
36.铁磁共振线宽δh≤344oe。
37.与现有技术相比,本发明的有益效果为:
38.本发明提供的一种ku波段自偏置器件用双相复合铁氧体材料,兼具适宜各向异性场(ha≤13.83koe)、高矫顽力(hc≥3346oe)和剩磁比(mr/ms≥0.89)、低铁磁共振线宽(δh≤344oe)特性。适宜的各向异性场使得自偏置器件应用于ku波段,对自偏置器件低频方向的发展具有积极的意义;高的矫顽力与剩磁比能够保持高的内场,有利于实现自偏置特性;低的铁磁共振线宽能够有效降低自偏置器件的插入损耗,提高自偏置器件的工作频带。
附图说明
39.图1为实施例1得到的双相复合铁氧体材料的磁滞回线;
40.图2为实施例1得到的双相复合铁氧体材料的铁磁共振线宽拟合图;
41.图3为实施例1得到的双相复合铁氧体材料的扫描电镜照片;
42.图4为实施例2得到的双相复合铁氧体材料的扫描电镜照片;
43.图5为实施例3得到的双相复合铁氧体材料的扫描电镜照片;
44.图6为实施例4得到的双相复合铁氧体材料的扫描电镜照片。
具体实施方式
45.针对ku波段器件小型轻量化、集成化的应用需求,本发明提供一种ku波段自偏置器件用双相复合铁氧体材料及其制备方法,克服了现有ku波段自偏置器件用铁氧体材料难以兼具适宜各向异性场、高矫顽力和剩磁比特性的技术难题。在固相法的基础上采用两次预烧,结合srm铁氧体高矫顽力和剩磁比特性与nicuzn铁氧体低损耗特性。利用各向异性补偿机制、交换耦合理论、磁化阻力机制、材料表界面理论、扩散理论深入分析了nicuzn铁氧体的引入对材料性能的影响。结合烧结动力学、促晶/阻晶机制、静电空间位阻机制分析掺杂剂对双相复合铁氧体显微结构,磁性能的影响,制定最佳的主配方与掺杂剂配方,并对工艺进行优化,最终研制出兼具适宜各向异性场、高矫顽力和剩磁比、低铁磁共振线宽特性的双相复合铁氧体材料,适于ku波段自偏置器件设计。
46.实施例1~4
47.步骤1、配料
48.srm铁氧体以caco3、la2o3、co2o3、srco3和fe2o3为原料,按照下表所示比例配制srm铁氧体初始粉体,实施例1~4中srm铁氧体配方见下表:
49.实施例caco3(mol%)la2o3(mol%)co2o3(mol%)srco3(mol%)fe2o3(mol%)10.662.471.3610.6884.83 22.434.353.218.5481.47 33.576.485.356.2878.32 45.028.526.373.6676.43
50.步骤2、一次球磨
51.将步骤1得到的初始粉体在球磨机内混合均匀,球磨时间为14h;
52.步骤3、一次预烧
53.将步骤2得到的一次球磨料烘干,过筛,在1280℃下进行预烧,升温速率为1.0℃/min,保温时间为4h,得到srm铁氧体预烧料;
54.步骤4、二次球磨
55.以nio、zno、cuo、fe2o3为原料,按照下表所示比例配料,实施例1~4中nicuzn铁氧体配方见下表:
[0056][0057]
按照nicuzn铁氧体与srm铁氧体初始粉体的重量比为1:1.22的比例,将nicuzn铁氧体加入srm铁氧体预烧料中,再加入占复合铁氧体材料的重量百分比为0.8wt.%的isobam,在球磨机内混合均匀,球磨时间为11h;
[0058]
步骤5、二次预烧
[0059]
将步骤4得到的二次球磨料烘干,在930℃下进行预烧,预烧时间为4h;
[0060]
步骤6、掺杂
[0061]
在步骤5得到的二次预烧料中加入掺杂剂,掺杂剂占复合铁氧体材料的重量百分比为:0.3wt.%sio2、0.8wt.%h3bo3、1.0wt.%caco3、0.6wt.%cuo;
[0062]
步骤7、三次球磨
[0063]
将步骤6得到的混合粉料在球磨机中球磨20h混合均匀,粉料粒度控制在0.5~0.9μm之间;
[0064]
步骤8、成型
[0065]
将步骤7得到的三次球磨料脱水,脱水后浆料含水量控制在30wt%~35wt%之间,
然后加入占复合铁氧体材料的重量百分比为0.3wt.%的c
36h70
o4zn,在磁场成型机下压制成型,成型磁场为1.6t,成型压力为120mpa;
[0066]
步骤9、烧结
[0067]
将步骤8压制得到的坯件进行烧结,烧结温度为1180℃,保温时间为4h,烧结完成后,即可得到ku波段自偏置器件用双相复合铁氧体材料。
[0068]
对步骤9得到的双相复合铁氧体材料进行性能测试:饱和磁化强度4πms、剩余磁化强度4πmr、剩磁比mr/ms、矫顽力hc采用美国lakeshore 8604型振动样品磁强计测试,铁磁共振线宽δh采用美国agilent n5227a矢量网络分析仪测试,各向异性场ha通过基特尔公式推导得出。
[0069]
基于上述工艺研制的双相复合铁氧体材料,实施例1~4性能参数如下:
[0070]

技术特征:


1.一种ku波段自偏置器件用双相复合铁氧体材料,其特征在于,包括srm铁氧体、nicuzn铁氧体和掺杂剂;所述srm铁氧体的组分为:3.66~10.68mol%srco3、0.66~5.02mol%caco3、2.47~8.52mol%la2o3、1.36~6.37mol%co2o3、76.43~84.83mol%fe2o3,所述nicuzn铁氧体的组分为:24mol%~36mol%nio、3~8mol%cuo、8~28mol%zno、45mol%~48mol%fe2o3,nicuzn铁氧体与srm铁氧体的重量比为1:(0.11~9);掺杂剂占复合铁氧体材料的重量百分比为:0.1~0.4wt.%sio2、0.3~1.2wt.%h3bo3、0.5~1.8wt.%caco3、0.4~1.0wt.%cuo、0.4~1.2wt.%isobam、0.1wt.%~0.7wt.%c
36
h
70
o4zn。2.一种ku波段自偏置器件用双相复合铁氧体材料的制备方法,其特征在于,包括以下步骤:步骤1、配料以srco3、caco3、la2o3、co2o3、fe2o3为原料,按照“3.66~10.68mol%srco3、0.66~5.02mol%caco3、2.47~8.52mol%la2o3、1.36~6.37mol%co2o3、76.43~84.83mol%fe2o
3”的比例称料,混料,得到srm铁氧体初始粉体;步骤2、一次球磨将步骤1得到的初始粉体在球磨机内混合均匀,球磨时间为5~18h;步骤3、一次预烧将步骤2得到的一次球磨料烘干,过筛,在1080~1360℃下进行预烧,升温速率为0.8~1.7℃/min,保温时间为1~6h,得到srm铁氧体预烧料;步骤4、二次球磨以nio、zno、cuo、fe2o3为原料,按照“24mol%~36mol%nio、3~8mol%cuo、8~28mol%zno、45mol%~48mol%fe2o
3”的比例配料,得到nicuzn铁氧体;按照nicuzn铁氧体与srm铁氧体初始粉体的重量比为1:(0.11~9)的比例,将nicuzn铁氧体加入srm铁氧体预烧料中,再加入占复合铁氧体材料的重量百分比为0.4~1.2wt.%的isobam,在球磨机内混合均匀,球磨时间为6~19h;步骤5、二次预烧将步骤4得到的二次球磨料烘干,在900~1200℃下进行预烧,预烧时间为1~6h;步骤6、掺杂在步骤5得到的二次预烧料中加入掺杂剂,掺杂剂占复合铁氧体材料的重量百分比为:0.1~0.4wt.%sio2、0.3~1.2wt.%h3bo3、0.5~1.8wt.%caco3、0.4~1.0wt.%cuo;步骤7、三次球磨将步骤6得到的混合粉料在球磨机中球磨13~25h混合均匀,粉料粒度控制在0.6~1.0μm之间;步骤8、成型将步骤7得到的三次球磨料脱水,脱水后浆料含水量控制在14wt%~35wt%之间,然后加入占复合铁氧体材料的重量百分比为0.1wt.%~0.7wt.%的c
36
h
70
o4zn,在磁场成型机下压制成型,成型磁场为1.3~1.6t,成型压力为85~130mpa;步骤9、烧结将步骤8压制得到的坯件进行烧结,烧结温度为1080~1230℃,保温时间为3~8h,烧结
完成后,即可得到ku波段自偏置器件用双相复合铁氧体材料。

技术总结


一种Ku波段自偏置器件用双相复合铁氧体材料,属于铁氧体材料制备技术领域。所述双相复合铁氧体材料包括SrM铁氧体、NiCuZn铁氧体和掺杂剂;SrM铁氧体的组分为:SrCO3、CaCO3、La2O3、Co2O3、Fe2O3,NiCuZn铁氧体的组分为:NiO、3~8mol%CuO、ZnO、Fe2O3,NiCuZn铁氧体与SrM铁氧体的重量比为1:(0.11~9);掺杂剂占复合铁氧体材料的重量百分比为:SiO2、H3BO3、CaCO3、CuO、ISOBAM、C


技术研发人员:

邬传健 王武 余忠 孙科 李启帆 蒋晓娜 兰中文 李翱

受保护的技术使用者:

电子科技大学

技术研发日:

2022.10.20

技术公布日:

2022/12/16

本文发布于:2024-09-21 01:25:46,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/35921.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议