一种两步烧结制备铌酸钾钠基压电陶瓷的方法



1.本发明属于压电陶瓷制造领域,特别涉及一种两步烧结制备铌酸钾钠基压电陶瓷的方法。


背景技术:



2.压电陶瓷是一种可以实现电能和机械能相互转换的功能材料,被广泛用于制作电容器、滤波器、振荡器、谐振器、鉴频器、陷波器等各种压电器件,这些压电器件在电子、通讯、航天、军事等领域被广泛使用。目前世界铁电压电陶瓷市场使用最广泛的依然是锆钛酸铅(简称pzt)基陶瓷,这类陶瓷具有优异的压电性能和相对较高的居里温度tc。然而,pzt基压电陶瓷含有大量的铅元素,这使得其在制备、加工、使用乃至回收过程中都会对人体和自然环境造成严重的危害。随着社会的发展,人们对自然环境的保护越来越重视,许多国家和地区开始限制铅元素在电子产品中的应用。因此,压电陶瓷的无铅化已势在必行。
3.目前研究得比较多的无铅压电陶瓷中,钛酸铋钠(简称bnt)基压电陶瓷的压电性能比商用pzt基压电陶瓷低很多,ba(zr,ti)o3–
(ba,ca)tio3系压电陶瓷虽然压电性能可以达到非常高的水平,但居里温度tc太低,因此,它们的实际应用都非常困难。目前最具有实用化前景的无铅压电陶瓷是铌酸钾钠基陶瓷,这类陶瓷不仅具有相对较高的tc,而且其压电性能可以通过构建新型相界达到同商用pzt基压电陶瓷相媲美的水平。因此,铌酸钾钠基压电陶瓷已成为国内外学者的研究热点。
4.遗憾的是,铌酸钾钠基压电陶瓷中的碱金属元素在高温烧结时非常容易挥发,从而导致陶瓷的成分偏离化学计量比,陶瓷的致密性也会受到影响,这对大规模生产来说是极为不利的。为构建新型相界而添加进铌酸钾钠基压电陶瓷中的许多组元具有较高的熔点,它们会使得铌酸钾钠基压电陶瓷的烧结温度变高,从而进一步加剧碱金属元素的挥发。另外,为构建新型相界而添加的掺杂剂很多还会导致铌酸钾钠基压电陶瓷晶粒尺寸分布变得非常不均匀,晶粒尺寸有时甚至会出现双峰分布,即在陶瓷中出现晶粒尺寸差异很大的两类晶粒。受包括上述因素在内许多因素的影响,铌酸钾钠基压电陶瓷适宜的烧结温度区间极其窄,这导致这类陶瓷的工艺重现性非常差。上述这些问题严重阻碍了铌酸钾钠基压电陶瓷的生产以及实际应用,因此需要采用新的技术方案加以解决。


技术实现要素:



5.为了克服现有技术所存在的问题,本发明提出了一种两步烧结制备铌酸钾钠基压电陶瓷的方法。这种方法的烧结过程主要分为两步,通过对每一步烧结的工艺参数分别进行调控,实现对烧结过程中碱金属元素挥发的抑制,同时提高陶瓷晶粒尺寸分布的均匀性,进而改善铌酸钾钠基压电陶瓷的工艺重现性。该方法可全部采用与传统陶瓷制备方法一样的生产设备,工艺过程容易控制,适用于工业化生产。
6.为实现上述目的,本发明提出的两步烧结制备铌酸钾钠基压电陶瓷的方法,包括以下步骤
步骤1:将初始原料(包括k2co3、na2co3、nb2o5和掺杂剂)粉末进行湿混球磨,然后将湿混浆料分离出来并烘干,得到混合粉料;步骤2:将步骤1的混合粉料加热到高温进行固相反应,得到熟料粉末;步骤3:将步骤2的熟料粉末进行研磨、过筛,在过筛后的熟料粉末中加入粘结剂进行造粒,然后将造粒后的粉末压制成型,得到生坯;步骤4:将步骤3的生坯在300~600℃的温度下保温1~10小时进行排胶处理,得到排胶后的生坯;步骤5:将步骤4所述的排胶后的生坯加热至一个较高温度进行第一步烧结,在该温度下保温一定时间后,得到第一步烧结陶瓷;步骤6:将步骤5的第一步烧结陶瓷快速冷却至一个较低温度进行第二步烧结,在该温度保温一定时间后冷却至室温,得到铌酸钾钠基陶瓷成品。
7.进一步地,本发明所述铌酸钾钠基压电陶瓷的晶体构型为钙钛矿结构,其主要组成元素为钾、钠、铌、氧。
8.进一步地,步骤1所述的掺杂剂为除k2co3、na2co3、nb2o5以外的氧化物、碳酸盐、氢氧化物或其他形式的化合物,所述的掺杂剂的种类可以为一种或多种。
9.进一步地,步骤1所述的初始原料k2co3、na2co3、nb2o5和掺杂剂的摩尔比为(0.1~0.4):(0.1~0.4):(0.4~0.5):(0~0.1)。
10.进一步地,步骤5中,所述的进行第一步烧结的温度在(ts-10℃)~(ts+40℃)之间,其中ts为低温快速生长晶粒完全消失温度;ts采用晶粒生长常数的阿累尼乌斯图进行确定,其值为所述阿累尼乌斯图中过渡区和高温慢速生长晶粒区的临界温度。
11.进一步地,步骤5中,所述的保温时间为0~60分钟。
12.进一步地,步骤6中,所述的进行第二步烧结的温度在(tf-40℃)~(ts-10℃)之间,其中tf为高温慢速生长晶粒开始出现温度;tf采用晶粒生长常数的阿累尼乌斯图进行确定,其值为所述阿累尼乌斯图中过渡区和低温快速生长晶粒区的临界温度。
13.进一步地,步骤6中,所述的保温时间为1~20小时。
14.进一步地,步骤6中,所述的快速冷却的冷却速率在10℃/分钟~100℃/分钟之间。
15.本发明提供的两步烧结制备铌酸钾钠基压电陶瓷的方法,可以有效改善铌酸钾钠基陶瓷的烧结特性,抑制烧结过程中碱金属元素的挥发,同时提高陶瓷晶粒尺寸分布的均匀性;进而改善铌酸钾钠基压电陶瓷的工艺重现性。并且本发明提供的方法对制造设备要求不高,可全部采用与传统陶瓷制备方法一样的生产设备,工艺过程容易控制,适用于工业化生产。
附图说明
16.图1为本发明铌酸钾钠基压电陶瓷晶粒生长常数的阿累尼乌斯图,图中kb为玻尔兹曼常数,t表示温度。
17.图2为本发明铌酸钾钠基压电陶瓷的x射线衍射图谱。
18.图3为本发明铌酸钾钠基压电陶瓷的扫描电镜显微图像。
19.图4为本发明铌酸钾钠基压电陶瓷的压电常数d
33
随第二步烧结温度t2的变化图。
具体实施方式
20.下面将通过实施例并结合附图对本发明作更具体的描述,这些实施例仅作示例性说明的目的,而非用于限制本发明的适用范围。实施例中的实施条件可以根据需要做进一步的调整,未注明的实施条件为本领域常规的实施条件。实施例中的测试和表征,除非特别说明,采用本领域常规的测试和表征方法。应理解,本发明中所述的术语仅仅是为描述具体的实施方式,而非用于限制本发明的适用范围。本发明中,第一步烧结温度标记为t1,第二步烧结温度标记为t2。
21.实施例1步骤1:按照化学式0.95k
0.5
na
0.5
nbo
3-0.05batio3的化学计量比称量k2co3、na2co3、nb2o5、baco3和tio2等初始原料粉末,然后以无水乙醇和二氧化锆球作为介质对称量好的初始原料粉末进行湿混球磨,球磨时间为24小时,最后将湿混浆料分离出来并烘干,得到混合粉料;步骤2:将步骤1的混合粉料加热到850℃并保温6小时使其发生固相反应,随后随炉冷却至室温,得到熟料粉末;步骤3:将步骤2的熟料粉末进行研磨、过筛,在过筛后的熟料粉末中添加质量比为5%的聚乙烯醇水溶液作为粘结剂进行造粒,然后采用干压成型法将造粒后的粉末压制成直径为10mm的圆片状生坯;步骤4:将步骤3的生坯在温度500℃下保温4小时进行排胶处理,得到排胶后的生坯;步骤5:根据如图1所示的0.95(k
0.5
na
0.5
)nbo
3-0.05batio3陶瓷晶粒生长常数的阿累尼乌斯图,确定该陶瓷的低温快速生长晶粒完全消失温度ts为1090℃,选用位于(ts-10℃)~(ts+40℃)之间的温度1120℃作为第一步烧结温度t1,将步骤4所述的排胶后的生坯加热至该温度进行第一步烧结,保温时间为10分钟,得到第一步烧结陶瓷;步骤6:根据0.95(k
0.5
na
0.5
)nbo
3-0.05batio3陶瓷晶粒生长常数的阿累尼乌斯图,确定该陶瓷的低温快速生长晶粒完全消失温度tf为1070℃,选用位于(tf-40℃)~(ts-10℃)之间的温度1070℃作为第二步烧结温度t2,将步骤5的第一步烧结陶瓷以25℃/分钟的冷却速率冷却至该温度进行第二步烧结,保温时间为3小时,最后自然冷却至室温,得到0.95(k
0.5
na
0.5
)nbo
3-0.05batio3陶瓷;步骤7:将步骤6烧成的陶瓷样品的两侧表面打磨抛光后被上银电极,然后放入常温硅油浴中进行极化处理,极化电场强度为30kv/cm,极化时间为30分钟,制得铌酸钾钠基压电陶瓷。
22.采用准静态d
33
测试仪测得该铌酸钾钠基压电陶瓷的压电常数d
33
为144pc/n。用x射线衍射仪测得该陶瓷的x射线衍射图谱,如图2所示,该图表明铌酸钾钠基压电陶瓷的晶体构型为钙钛矿结构。
23.实施例2步骤1:按照化学式0.98(k
0.5
na
0.5
)nbo
3-0.02(bi
0.5
na
0.5
)tio3的化学计量比称量k2co3、na2co3、nb2o5、bi2o3和tio2等初始原料粉末,然后以无水乙醇和二氧化锆球作为介质对称量好的初始原料粉末进行湿混球磨,球磨时间为24小时,最后将湿混浆料分离出来并烘干,得到混合粉料;
步骤2:将步骤1的混合粉料加热到850℃并保温6小时使其发生固相反应,随后随炉冷却至室温,得到熟料粉末;步骤3:将步骤2的熟料粉末进行研磨、过筛,在过筛后的熟料粉末中添加质量比为5%的聚乙烯醇水溶液作为粘结剂进行造粒,然后采用干压成型法将造粒后的粉末压制成直径为10mm的圆片状生坯;步骤4:将步骤3的生坯在温度500℃下保温4小时进行排胶处理,得到排胶后的生坯;步骤5:根据0.98(k
0.5
na
0.5
)nbo
3-0.02(bi
0.5
na
0.5
)tio3陶瓷晶粒生长常数的阿累尼乌斯图,确定该陶瓷的低温快速生长晶粒完全消失温度ts为1130℃,选用位于(ts-10℃)~(ts+40℃)之间的下限温度1120℃作为第一步烧结温度t1,将步骤4所述的排胶后的生坯加热至该温度进行第一步烧结,保温时间为10分钟,得到第一步烧结陶瓷;步骤6:根据0.98(k
0.5
na
0.5
)nbo
3-0.02(bi
0.5
na
0.5
)tio3陶瓷晶粒生长常数的阿累尼乌斯图,确定该陶瓷的低温快速生长晶粒完全消失温度tf为1090℃,选用位于(tf-40℃)~(ts-10℃)之间的温度1080℃作为第二步烧结温度t2,将步骤5的第一步烧结陶瓷以25℃/分钟的冷却速率冷却至该温度进行第二步烧结,保温时间为3小时,最后自然冷却至室温,得到0.98(k
0.5
na
0.5
)nbo
3-0.02(bi
0.5
na
0.5
)tio3陶瓷;步骤7:将步骤6烧成的陶瓷样品的两侧表面打磨抛光后被上银电极,然后放入常温硅油浴中进行极化处理,极化电场强度为30kv/cm,极化时间为30分钟,制得铌酸钾钠基压电陶瓷。
24.采用准静态d
33
测试仪测得该铌酸钾钠基压电陶瓷的压电常数d
33
为175pc/n。用扫描电子显微镜观察该陶瓷的显微形貌,如图3所示,该图表明采用本发明所述方法制得的铌酸钾钠基压电陶瓷具有较为均匀的晶粒尺寸分布。
25.实施例3步骤1:按照化学式0.96(k
0.5
na
0.5
)nbo
3-0.04(bi
0.5
na
0.5
)zro3的化学计量比称量k2co3、na2co3、nb2o5、bi2o3和zro2等初始原料粉末,然后以无水乙醇和二氧化锆球作为介质对称量好的初始原料粉末进行湿混球磨,球磨时间为24小时,最后将湿混浆料分离出来并烘干,得到混合粉料;步骤2:将步骤1的混合粉料加热到850℃并保温6小时使其发生固相反应,随后随炉冷却至室温,得到熟料粉末;步骤3:将步骤2的熟料粉末进行研磨、过筛,在过筛后的熟料粉末中添加质量比为5%的聚乙烯醇水溶液作为粘结剂进行造粒,然后采用干压成型法将造粒后的粉末压制成直径为10mm的圆片状生坯;步骤4:将步骤3的生坯在温度500℃下保温4小时进行排胶处理,得到排胶后的生坯;步骤5:根据0.96(k
0.5
na
0.5
)nbo
3-0.04(bi
0.5
na
0.5
)zro3陶瓷晶粒生长常数的阿累尼乌斯图,确定该陶瓷的低温快速生长晶粒完全消失温度ts为1160℃,直接选用其ts温度作为第一步烧结温度t1,将步骤4所述的排胶后的生坯加热至该温度进行第一步烧结,保温时间为10分钟,得到第一步烧结陶瓷;步骤6:根据0.96(k
0.5
na
0.5
)nbo
3-0.04(bi
0.5
na
0.5
)zro3陶瓷晶粒生长常数的阿累尼
乌斯图,确定该陶瓷的低温快速生长晶粒完全消失温度tf为1110℃,选用位于(tf-40℃)~(ts-10℃)之间的温度1120℃作为第二步烧结温度t2,将步骤5的第一步烧结陶瓷以25℃/分钟的冷却速率冷却至该温度进行第二步烧结,保温时间为3小时,最后自然冷却至室温,得到0.96(k
0.5
na
0.5
)nbo
3-0.04(bi
0.5
na
0.5
)zro3陶瓷;步骤7:将步骤6烧成的陶瓷样品的两侧表面打磨抛光后被上银电极,然后放入常温硅油浴中进行极化处理,极化电场强度为30kv/cm,极化时间为30分钟,制得铌酸钾钠基压电陶瓷。
26.实施例4将第二步烧结温度t2变为1110℃,其余未述及部分以与实施例3中相同的方式制得0.96(k
0.5
na
0.5
)nbo
3-0.04(bi
0.5
na
0.5
)zro3压电陶瓷。
27.实施例5将第二步烧结温度t2变为1100℃,其余未述及部分以与实施例3中相同的方式制得0.96(k
0.5
na
0.5
)nbo
3-0.04(bi
0.5
na
0.5
)zro3压电陶瓷。
28.实施例6将第二步烧结温度t2变为1070℃,其余未述及部分以与实施例3中相同的方式制得0.96(k
0.5
na
0.5
)nbo
3-0.04(bi
0.5
na
0.5
)zro3压电陶瓷。
29.采用准静态d
33
测试仪测量实施例3~6制得的铌酸钾钠基压电陶瓷的压电常数d
33
,如图4所示,该图显示随第二步烧结温度t2在1070~1120℃之间的范围变化,该铌酸钾钠基压电陶瓷压电常数d
33
值的变化幅度不超过10%,表明采用本发明所述的两步烧结制备铌酸钾钠基压电陶瓷的方法具有良好的工艺重现性。

技术特征:


1.一种两步烧结制备铌酸钾钠基压电陶瓷的方法,其特征在于,包括以下步骤:步骤1:将初始原料(包括k2co3、na2co3、nb2o5和掺杂剂)粉末进行湿混球磨,然后将湿混浆料分离出来并烘干,得到混合粉料;步骤2:将步骤1的混合粉料加热到高温进行固相反应,得到熟料粉末;步骤3:将步骤2的熟料粉末进行研磨、过筛,在过筛后的熟料粉末中加入粘结剂进行造粒,然后将造粒后的粉末压制成型,得到生坯;步骤4:将步骤3的生坯在300~600℃的温度下保温1~10小时进行排胶处理,得到排胶后的生坯;步骤5:将步骤4所述排胶后的生坯加热至一个较高温度进行第一步烧结,在该温度下保温一定时间后,得到第一步烧结陶瓷;步骤6:将步骤5的第一步烧结陶瓷快速冷却至一个较低温度进行第二步烧结,在该温度保温一定时间后冷却至室温,得到铌酸钾钠基陶瓷成品。2.根据权利要求1所述的铌酸钾钠基压电陶瓷,其特征在于,其晶体构型为钙钛矿结构,其主要组成元素为钾、钠、铌、氧。3.根据权利要求1所述的铌酸钾钠基压电陶瓷,其特征在于,步骤1所述的掺杂剂为除k2co3、na2co3、nb2o5以外的氧化物、碳酸盐、氢氧化物或其他形式的化合物,所述的掺杂剂的种类可以为一种或多种。4.根据权利要求1所述的铌酸钾钠基压电陶瓷,其特征在于,步骤1所述的初始原料k2co3、na2co3、nb2o5和掺杂剂的摩尔比为(0.1~0.4):(0.1~0.4):(0.4~0.5):(0~0.1)。5.根据权利要求1所述的制备铌酸钾钠基压电陶瓷的方法,其特征在于,步骤5中,所述的进行第一步烧结的温度在(t
s
-10℃)~(t
s
+40℃)之间,其中t
s
为低温快速生长晶粒完全消失温度。6.根据权利要求1所述的制备铌酸钾钠基压电陶瓷的方法,其特征在于,步骤5中,所述的保温时间为0~60分钟。7.根据权利要求1所述的制备铌酸钾钠基压电陶瓷的方法,其特征在于,步骤6中,所述的进行第二步烧结的温度在(t
f
-40℃)~(t
s
-10℃)之间,其中t
f
为高温慢速生长晶粒开始出现温度。8.根据权利要求1所述的制备铌酸钾钠基压电陶瓷的方法,其特征在于,步骤6中,所述的保温时间为1~20小时。9.根据权利要求1所述的制备铌酸钾钠基压电陶瓷的方法,其特征在于,步骤6中,所述快速冷却的冷却速率在10℃/分钟~100℃/分钟之间。10.权利要求5所述低温快速生长晶粒完全消失温度t
s
,其特征在于,所述t
s
为铌酸钾钠基压电陶瓷晶粒生长常数的阿累尼乌斯图中过渡区和高温慢速生长晶粒区的临界温度。11.权利要求7所述高温慢速生长晶粒开始出现温度t
f
,其特征在于,所述t
f
为铌酸钾钠基压电陶瓷晶粒生长常数的阿累尼乌斯图中过渡区和低温快速生长晶粒区的临界温度。

技术总结


本发明公开了一种两步烧结制备铌酸钾钠基压电陶瓷的方法,属于压电陶瓷制造领域。制备方法包括:将按照化学计量比称量好的初始原料粉末进行混合并烘干,得到混合粉料;混合粉料经高温预烧,得到熟料粉末;熟料粉末经研磨、过筛后加入粘结剂进行造粒,然后压制成型,得到生坯;将生坯排胶后加热至第一步烧结温度,保温0~60分钟,随后快速冷却至第二步烧结温度,保温1~20小时。其中第一步烧结温度和第二步烧结温度借助晶粒生长常数的阿累尼乌斯图进行确定。本发明提供的方法,可以抑制烧结过程中碱金属元素的挥发,有效改善铌酸钾钠基压电陶瓷的工艺重现性。该方法对设备要求不高,工艺过程容易控制,适用于工业化生产。适用于工业化生产。


技术研发人员:

陈异 潘永齐 黄龙飞 冯洁 徐尊平

受保护的技术使用者:

西南大学

技术研发日:

2022.10.05

技术公布日:

2022/12/16

本文发布于:2024-09-22 23:33:57,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/35902.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:陶瓷   步骤   晶粒   温度
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议