微积分入门

中国战国时代(公元前7世纪),我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”,即老庄哲学中所有的无限可分性和极限思想;公元前4世纪《墨经》中有了有穷、无穷、无限小(最小无内)、无穷大(最大无外)的定义和极限、瞬时等概念。这是朴素的、也是很典型的极限概念。而极限理论便是微分学的基础。
古希腊时期(公元前3世纪),阿基米德用内接正多边形的周长来穷尽圆周长,而求得圆周率愈来愈好的近似值,也用一连串的三角形来填充抛物线的图形,以求得其面积。这是穷尽法的古典例子之一,可以说是积分思想的起源。
17世纪,许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。
17世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。
19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。
1874年,德国数学家外尔斯特拉斯构造了一个没有导数的连续函数,即构造了一条没有切线的连续曲线,这与直观概念是矛盾的。它使人们认识到极限概念、连续性、可微性和收敛性对实数系的依赖比人们想象的要深奥得多。外尔斯特拉斯最终完成了对实数系更深刻的性质的理解,使得数学分析完全由实数系导出,脱离了知觉理解和几何直观。
人类对自然的认识永远不会止步,微积分这门学科在现代也一直在发展着,人类认识微积分的水平在不断深化。
微积分学 (Calculus, 拉丁语意为用来计数的小石头) 是研究极限、微分学、积分学和无穷级数的一个数学分支,并成为了现代大学教育的重要组成部分。历史上,微积分曾经指无穷小的计算。更本质的讲,微积分学是一门研究变化的科学,正如几何学是研究空间的科学一样。
客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。
由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。
微积分学在科学、经济学和工程学领域被广泛的应用,来解决那些仅依靠代数学不能有效解决的问题。微积分学在代数学、三角学和解析几何学的基础上建立起来,并包括微分学、积分学两大分支。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。微积分学基本定理指出,微分和积分互为逆运算,这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。在更深的数学领域中,微积分学通常被称为分析学,并被定义为研究函数的科学。
在高二上学期的数学学习过程中,我们认识了导数和定积分,并开始了对其应用的理解和练习。其实,早在高中物理开始不久后的学习中,我们就接触到了微积分的原型——微元法。同当年的科学家一样,我们也因物理上的应用需要,开始了对微积分学的认识之旅。
借着这次研究性学习的契机,我们就了解一下微积分学的发展历史,认识数学研究对社会发展的重要意义,本着“以史为镜”的态度了解其中波折而有趣的发展历程;并由此拓展自己的知识面,增添自己对微积分学习的兴趣。
作为理科生,探究过程中的我们也能结合所学历史知识、辩证分析的方法,培养自身人文素养,增强自身的综合素质,为高中阶段的历史学习画上圆满的句号。
我们也对微积分在生活中就一些简单实际应用的一些研究来提高自己在以微积分的思想方法解决问题的能力;了解在哪些情况,哪些领域会用到微积分;进一步加深对微积分的认识。
另一方面,在进行小组讨论、共同研究的时候,通过组员的积极参与和组员间的合作,我们可以通过共同探索增强自己的责任感,增进相互之间的友谊,提高自身的实践探究能力,
学会将理论知识和动手实践能力结合来解决现实生活中的问题,以此提高自身的综合素质。
CC数据微积分的主要内容及其他
研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。
本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。
微分学的主要内容包括:极限理论、导数、微分等。
积分学的主要内容包括:定积分、不定积分等。
微积分是与科学应用联系着发展起来的。最初,牛顿应用微积分学及微分方程对第谷浩瀚的天文观测数据进行了分析运算,得到了万有引力定律,并进一步导出了开普勒行星运动三定律。此后,微积分学成了推动近代数学发展强大的引擎,同时也极大的推动了天文学
、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。
微积分主要有三大类分支:极限、微分学、积分学。微积分的基本理论表明了微分和积分是互逆运算。牛顿和莱布尼茨发现了这个定理以后才引起了其他学者对于微积分学的狂热的研究。这个发现使我们在微分和积分之间互相转换。这个基本理论也提供了一个用代数计算许多积分问题的方法,该方法并不真正进行极限运算而是通过发现不定积分。该理论也可以解决一些微分方程的问题,解决未知数的积分。微分问题在科学领域无处不在。
微积分的基本概念还包括函数、无穷序列、无穷级数和连续等,运算方法主要有符号运算技巧,该技巧与初等代数和数学归纳法紧密相连。
微积分被延伸到微分方程、向量分析、变分法、复分析、时域微分和微分拓扑等领域。微积分的现代版本是实分析。
极限
微积分中最重要的概念是“极限”。微商(即导数)是一种极限。定积分也是一种极限。
从牛顿实际使用它到制定出周密的定义,数学家们奋斗了200多年。现在使用的定义是维斯特拉斯于19世纪中叶给出的。
数列极限就是当一个有顺序的数列往前延伸时,如果存在一个有限数(非无限大的数),使这个数列可以无限地接近这个数,这个数就是这个数列的极限。
数列极限的表示方法是:
温玉理疗床
其中 L 就是极限的值。例如当时,它的极限为 L = 0。就是说n越大(越往前延伸),这个值越趋近于0。
导数
我们知道在运动学中,平均速度等于通过的距离除以所花费的时间,同样在一小段间隔的
时间内,除上其走过的一小段距离,等于这一小段时间内的速度,但当这一小段间隔的时间趋于零时,这时的速度为瞬时速度,无法按照通常的除法计算,这时的速度为时间的导数。得用求导的方法计算。也就是说,一个函数的自变量趋近某一极限时,其因变量的增量与自变量的增量之商的极限即为导数。在速度问题上,距离是时间的因变量,随时间变化而变化,当时间趋于某一极限时,距离增量除以时间增量的极限即为距离对时间的导数。
导数的几何意义是该函数曲线在这一点上的切线斜率。
笔杆贴标机微分学
微分学主要研究的是在函数自变量变化时如何确定函数值的瞬时变化率(或微分)。换言之,计算导数的方法就叫微分学。微分学的另一个计算方法是牛顿法,该算法又叫应用几何法,主要通过函数曲线的切线来寻点斜率。费马常被称作“微分学的鼻祖”。
积分学rbd-573
积分学是微分学的逆运算,即从导数推算出原函数。又分为定积分与不定积分。一个一元
函数的定积分可以定义为无穷多小矩形的面积和,约等于函数曲线下包含的实际面积。根据以上认识,我们可以用积分来计算平面上一条曲线所包含的面积、球体或圆锥体的表面积或体积等。 而不定积分,用途较少,主要用于微分方程的解。
微积分的符号
微分学中的符号“dx”、“dy”等,系由莱布尼茨首先使用。其中的d源自拉丁语中“差”(Differentia)的第一个字母。积分符号“∫”亦由莱布尼茨所创,它是拉丁语“总和”(Summa)的第一个字母s的伸长(和Σ有相同的意义)。
通用积分微积分学的应用
微积分学的发展与应用几乎影响了现代生活的所有领域。它与大部分科学分支,特别是物理学,关系密切,而经济学亦经常会用到微积分学。几乎所有现代技术,如建筑、航空等都以微积分学作为基本数学工具。
微积分学课程喷雾面膜
在高校理、工科教学中,微积分是“高等数学”的主要内容之一。其教学法由学科创立一开始就受到人们重视。
微积分的基本介绍
微积分学基本定理指出,求不定积分与求导函数互为逆运算,把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积,这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。
微积分学是微分学和积分学的总称。它是一种数学思想,“无限细分”就是微分,“无限求和”就是积分。十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。
学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量。就是说,除的数不是零,所以有意义,同时,这个小量可以取任意小,只要满足在德尔塔区间,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。这个概念是成功的。
微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。

本文发布于:2024-09-21 19:48:17,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/339701.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:微积分   微积分学   数学   研究   发展   应用   理论
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议