循环流化床锅炉料层差压及炉膛差压的控制

循环流化床锅炉料层差压及炉膛差压的控制
 1 前言
随着循环流化床锅炉在国内的推广,锅炉操作人员的操作水平有了很大提高,对正常运行中的一些参数(如:汽温、汽压、床温)的控制基本都能掌握,但对复杂的物料循环系统的控制,一些新投产锅炉操作人员,还不能完全掌握。料层差压和炉膛差压是物料循环系统中两个主要控制参数,是反映炉内物料及循环灰量多少的两个主要主参数,反映了锅炉物料循环系统的运行情况,对锅炉的稳定运行有很大影响,正常运行中床温、负荷等参数与其有极大关系,运行过程中,根据工况将料层差压、炉膛差压调整到最佳数值,可以使锅炉的灰渣可燃物及飞灰可燃物损失大大降低,从而提高锅炉效率及经济效益,节约能源。
1.1 料层差压的概念
料层差压是表征流化床料层高度的物理量,一定的料层高度对应一定的料层差压。因为在流化状态下,流化床的料层差压,同单位面积上布风板上流化物料的重力与流化床浮力之差大约相等,对于正在运行的流化床锅炉,根据燃用煤种和料层差压来估算料层厚度是十分有用的。
1.2 料层差压的高、低对燃烧的影响
料层差压对流化床锅炉的稳定运行有很大影响,料层过薄,料层容易吹穿而产生沟流,流化不均而引起局部结渣,难以形成稳定的密相区,同时还会造成放渣含碳量高,燃烧不完全,增加了灰渣热损失。
料层过厚会增加风机压头,气泡增大,扬析夹带量增大,流化质量下降,底部大颗粒物料沉积,危及安全运行,风机电耗增加,锅炉效率下降。因此,料层厚度应维持在适当的范围,一般认为500mm左右为好。
1.3 如何控制料层差压
正常运行中,风门开度是不变的,如料层差压增加,说明料层增厚,可以采取排放冷渣来减薄料层,注意一次排放量不要太大,以免影响流化,排放后应将冷渣门关严以免漏入冷风引起冷渣管结渣,如有条件最好采取连续排渣。不同厂家料层差压的测量方式不同,一般采用风室静压,作为参照,风室静压等于布风机阻力加料层阻力。在冷态试验中测定不同风量下的布风板阻力,运行中可以通过风室静压,估算料层差压和料层厚度。
对于0≤13mm的物料,为保证最低流化风量,风室静压要控制在8KPa以上,这时对应的料层差压为正常运行料层控制的最小值。
循环流化床锅炉用一次风机、风压相对煤粉炉风机风压较高,运行中有风道撕裂现象,风机压头和风道的强度、风室的设计静压值也就决定了风室静压控制的最大值,正常运行中一般都要留有余量。家庭系统
以上最谈到的是料层差压控制的最小值和最大值,提供了控制的最大上下限,运行稳定后,应寻控制的最佳值。
料层差压随时间的变化曲线,斜率最小时对应的料层差压数值为最佳值。
长春密刺现在一般采用DCS控制,微机可以做出料层差压曲线,曲线斜率最小时,对应料层差压为最小。
如果没有DCS微机控制,也可凭经验。放渣后,床温升高,说明料层控制过厚
放渣后,床温下降,说明料层控制过薄。
2 炉膛差压的概念
炉膛差压是表征流化床上部悬浮物料浓度的量,炉膛上部空间一定的物料浓度,对应一定的炉膛差压,对于同一煤种炉膛上部物料浓度增加,炉膛差压值越大,炉膛差压与锅炉循环灰量成正比。
2.1控制炉膛差压的意义
流化床内物料粒子浓度是决定炉膛上部蒸发受热面传热强度的主要因素之一,试验表明,床、管之间放热系数随粒子浓度成直线关变化。因此,锅炉炉膛差压越高,锅炉循环灰量越大,将有更多的循环灰被带到炉膛上部悬浮段参加二次燃烧,锅炉出力也就越大。对于同一煤种,物料浓度增加,炉膛差压值增大,对炉膛上部蒸发受热传热强度越大,锅炉出力越强,反之锅炉出力越弱。
钢手轮X图循环流化床锅炉密相区中,燃料燃烧在密相区的燃烧热,有一部分由循环系统的返回料来吸收,带到炉膛上部放热,才能保持床温的稳定,如果循环量偏小,就会导致密相区放热过大,流化床温度过高,无法增加给煤量,带不上负荷,因此,足够的循环灰量是控制床温的有效手段。
2.2如何控制炉膛差压
控制炉膛差压主要靠调整循环灰量来实现,当循环灰量少,炉膛差压小,床温偏高,不能满足负荷的需要时应适当增加二次风量及给煤量,这样炉膛上部颗粒浓度增加,燃烧份额也得到增加,水冷壁的吸热量增加,旋风分离器入口物料浓度增加,物料循环量增加,负荷增加。有时因燃料含灰量高,循环量逐渐增大,床温过低燃烧无法维持,这时应放掉一部分循环灰,来降低炉膛差压。
3总结
以上料层差压和炉膛差压控制方法在我厂被广泛应用。流化床密相区水冷壁的磨损和旋风分离器的磨损都有所减轻,两台新投产240t/h锅炉连续运行周期均超过半年
高倍率循环流化床锅炉运行特点及对策探讨
通过对某热电公司一台高倍率循环流化床锅炉在调试运行中发现的几个问题的分析和讨论,试图摸索出高倍率循环流化床锅炉运行过程中的一些内在规律,并提出相应的处理措施,以指导实际运行操作。
节能装置
1. 锅炉运行情况概述:
1.1. 该锅炉是由XX锅炉厂生产的XG-130/3.82-M13型中温中压、单汽包、单炉膛、自然循环、全悬吊全钢架“M”型布置的循环流化床锅炉,物料分离和回送装置采用蜗壳式汽冷旋风分离器和“U”型返料器,锅炉采用DCS系统进行控制、操作。
1.2. 主要设计参数为:
   额定蒸发量变                   130t/h,
主汽压力                       3.82Mpa,
主汽温度                       450
锅炉热效率                     90.37%,
物料循环倍率                   25~30,
脱硫效率(Ca/s为2.0时)         ≥80%,
燃用设计煤种燃料消耗量         20.06t/h,
石灰石消耗量                   0.51t/h,
密、稀相区燃烧份额             64
1.3. 设计燃煤特性:
收到基全水份(My):              8.22%
收到基挥发份(Vy):              26.67%
收到基碳(Cy):                  47.56%
牙箱收到基灰份(Ay):                32.11%
收到基氢(Hy):                  2.5% 
收到基氧(Oy):                  8.34%
收到基氮(Ny):                  0.77%
收到基全硫(Sy):                0.4%
入炉煤粒度范围:0~10mm,50%切割粒径d50=1.5mm。
1.4。锅炉调试运行情况:该循环流化床锅炉在调试运行过程中表现出良好的性能,主要表现在运行稳定、带负荷能力强,在最高负荷143t/h时和最低30t/h时仍能保持良好的运行性能。从整个运行情况看,该炉物料分离器分离效率高,因而确保了锅炉物料循环量达到设计要求,从燃烧效果看,该炉燃烧效率很高,飞灰含碳量、底渣含碳分别在5%和1.5%以内,实际燃料消耗量16-18t/h左右。但是,该炉在调试运行中也发生了诸如床层结焦、物料将床层和返料器压死、床层或返料器物料消失、床层返料器结焦等不正常情况,这些不稳定因素严重影响了锅炉运行安全,也造成了较大的直接和间接经济损失。
2.异常情况原因分析:
2.1.从发生异常运行情况时的工况统计数字来看,大多数都处于升、停炉或加、减负荷的变工况过程中,正常运行过程中发生异常情况也是在锅炉负荷较高或较低时但次数较少。也就是说大多数异常情况是发生在锅炉处于一种不稳定工作状态之中。
2.2.高倍率循环流化床锅炉运行特点:因异常情况主要发生在升停炉或变负荷过程中,在对一、二次风量、返料量和给煤量进行调整时发生的,因而对高倍率循环流化床锅炉运行特点的把握至关重要。由于该循环流化床锅炉属高倍率循环炉,锅炉厂根据设计煤种属高挥发分、高热值、低灰分的特点选用高倍率循环的燃烧方式是完全正确、合理的,该炉表现出很高的燃烧效率也证明了这一点。然而,25--30的物料循环倍率意味着在以16-18t/h的给煤量加入炉膛的同时,约有400-480t/h或更高的循环灰量在炉膛和主循环回路中循环,其中炉膛中的循环灰量份额占绝对优势,即炉膛中的颗粒浓度极高(是一般循环流化床锅炉颗粒浓度的2.5-3.0倍),而炉膛上、下部(即密、稀相区)颗粒浓度分配(即燃烧份额)主要是由一、二次风量比例及返料量大小决定的(给煤量的变化也有影响但较弱)。因而如果在变负荷操作过程中,对一、二次风量及比例、返料灰量及给煤量的调整未能把握高倍率循环炉的特点而造成调整失当,势必引起炉膛内上下部颗粒浓度大幅度波动,当这种波动影响力达到使炉膛上下部颗粒浓度比例严重失调时,就会出现:或下部颗粒浓度过大物料将床层压死;或物料大部或全部集中于上部空间床层物料消失。
       同时,炉膛内颗粒浓度的大幅波动也使炉膛出口的颗粒浓度发生大幅波动,而这种浓度波动也引起炉膛出口含尘烟气温度和烟气速度(当炉膛出口负压值保持不变)的大幅度
变化,进而对分离器的分离效率产生重大影响。或因炉膛出口颗粒浓度、温度、速度(此三者的变化方向是一致的,且三者变化值分别都与分离器效率变化值成正比例关系)大幅上升,分离器效率也大幅度提高(此上升幅度以近三次方速度进行),亦即分离器下来的返料量可大幅增加,造成返料器松动床所受到的压力大幅增加,如此压力增加是瞬间进行的,松动床将无法承受而被压死;反之,当炉膛出口颗粒浓度、温度、速度大幅下降时,分离器效率也大幅下降,返料量也随之减少。如发生床层压死等极端情况时,返料进入立管中的量几乎为零,而返料风如未被及时停用,则立管中仅存不多的返料仍将被送入炉膛,当立管中存料料位重力不足以抵消返料风压时,立管料层就会被击穿,造成返料器空床。由于引风机的抽吸力和分离器阻力的共同影响,炉膛床层中极细颗粒有可能沿返料通道反窜到尾部烟道。
2.3.运行操作的影响分析:由于使用了DCS系统这种较先进的控制手段,运行操作人员可以更方便、更快捷地完成各种监视和操作任务。DCS系统不但可让运行人员利用点击鼠标的方式操作所有开关量,而且在进行各风门档板、阀门开度、辅机转数等开关量调节时可由运行人员根据需要直接设定好目标值,经确认后由微机自动快速跟进调节电动操作机构执行,执行完毕后微机还将执行情况以反馈信号的方式予以反馈。此种控制方式被掌握
后不但大大减轻了运行人员工作量,而且操作准确率极高,省时省力。经一段时间磨合,运行人员均能熟练运用此项操作技能。eps复合保温板
这种操作手段不但被熟练地运用于锅炉正常运行中,而且在升停炉、加减负荷等变工况中,运行人员也根据运行经验使用该手段,以期用较快速度完成各项操作。
       根据该循环流化床锅炉以往发生的一些异常情况大多发生在升停炉和加减负荷等变工况过程中的事实,我们对运行人员在变工况时的一些操作进行了详细的分析和研究,经对各种变工况下的一次风量和风压、二次风量和风压、返料风量和风压、点火风室压力、床层压力等操作曲线,并结合高倍率循环流化床锅炉的运行特点进行了认真分析研究,认为各种异常情况的发生除了煤质(含粒度)变化、设备结构设计存在着的一些不足等客观原因外,与运行人员在变工况时的操作不当有很大的关系。现将各种异常情况发生的原因和现象分析、讨论如下:

本文发布于:2024-09-22 15:49:18,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/292824.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:运行   锅炉   炉膛   循环   流化床   差压   物料
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议