感应加热原理(中频高频)

用感应电流使工件局部加热的表面热处理工艺。这种热处理工艺常用於表面淬火﹐也可用於局部退火或回火﹐有时也用於整体淬火和回火。20世纪30年代初﹐美国﹑苏联先后开始应用感应加热方法对零件进行表面淬火。随著工业的发展﹐感应加热热处理技术不断改进﹐应用范围也不断扩大。
        基本原理将工件放入感应器(线圈)内(图1 感应加热原理环氧树脂涂层)﹐当感应器中通入一定频率的交变电流时﹐周围即產生交变磁场。
交变磁场的电磁感应作用使工件内產生封闭的感应电流──涡流。感应电流在工件截面上的分布很不均匀﹐工件表层电流密度很高﹐向内逐渐减小(图2 沿工件截面的电流密度分布贴纸机)﹐这种
现象称为集肤效应。工件表层高密度电流的电能转变为热能﹐使表层的温度昇高﹐即实现表面加热。电流频率越高﹐工件表层与内部的电流密度差则越大﹐加热层越薄。在加热层温度超过钢的临界点温度后迅速冷却﹐即可实现表面淬火。
球头销
        分类 根据交变电流的频率高低﹐可将感应加热热处理分为超高频﹑高频﹑超音频﹑中频﹑工频 5类。超高频感应加热热处理所用的电流频率高达27兆赫﹐加热层极薄﹐仅约0.15毫米﹐可用於圆盘锯等形状复杂工件的薄层表面淬火。高频感应加热热处理所用的电流频率通常为200~300千赫﹐加热层深度为0.5~2毫米﹐可用於齿轮﹑汽缸套﹑凸轮﹑轴等零件的表面淬火。超音频感应加热热处理所用的电流频率一般为20~30千赫﹐用超
音频感应电流对小模数齿轮加热﹐加热层大致沿齿廓分布﹐粹火后使用性能较好。中频感应加热热处理所用的电流频率一般为2.5~10千赫﹐加热层深度为2~8毫米﹐多用於大模数齿轮﹑直径较大的轴类和冷轧辊等工件的表面淬火。工频感应加热热处理所用的电流频率为50~60赫﹐加热层深度为10~15毫米﹐可用於大型工件的表面淬火。
(见彩图 差温炉淬火
600毫米直径冷轧辊工频感应加热淬火
大型铸钢件的热处理炉
视频显示器 真空淬火炉
四、感应加热表面淬火
    (一)基本原理:
    将工件放在用空心铜管绕成的感应器内,通入中频或高频交流电后,在工件表面形成同频率的的感应电流,将零件表面迅速加热(几秒钟内即可升温800~1000度,心部仍接近室温)后立即喷水冷却(或浸油淬火),使工件表面层淬硬。(如下图所示)
    (二)加热频率的选用
    室温时感应电流流入工件表层的深度δ(mm)与电流频率f(HZ)的关系为
   
    频率升高,电流透入深度降低,淬透层降低。
    常用的电流频率有:
    1、高频加热:100~500KHZ,常用200~300KHZ,为电子管式高频加热,淬硬层深为0.5~2.5mm,适于中小型零件。
    2、中频加热:电流频率为500~10000HZ,常用2500~8000HZ,电源设备为机械式中频加热装置或可控硅中频发生器。淬硬层深度~10 mm。适于较  大直径的轴类、中大齿轮等。
    3、工频加热:电流频率为50HZ。采用机械式工频加热电源设备,淬硬层深可达10~20mm,适于大直径工件的表面淬火。
    (三)、感应加热表面淬火的应用:
    与普通加热淬火比较具有:
    1、加热速度极快,可扩大A体转变温度范围,缩短转变时间。
    2、淬火后工件表层可得到极细的隐晶马氏体,硬度稍高(2~3HRC)。脆性较低及较高疲劳强度。
    3、经该工艺处理的工件不易氧化脱碳,甚至有些工件处理后可直接装配使用。合成皮革>延时电路
    4、淬硬层深,易于控制操作,易于实现机械化,自动化。
中频功率与中频直流电压,直流电流的关系
最佳答案
中频功率是逆变器输出的功率,测量的是负载(即中频淬火炉,如果有输出变压器的话,包括输出变压器的损耗功率)功率。
直流电压乘以直流电流,计算出的是直流功率。直流功率除包含中频功率外,还包含了滤波元件(电抗器或直流滤波电感)、逆变可控硅或IGBT元件以及中频输出到负载的连接母线的损耗。
所以中频功率始终小于直流功率。但是,好的中频电源,它们之间的差别(或者说电源的
损耗)是不大的,在5%以内是合理的。

本文发布于:2024-09-21 13:39:02,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/272621.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:加热   工件   电流   热处理   频率   感应
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议