烘炉知识

烘炉知识
半导体激光器结构
烘炉是将冷态的焦炉进行烘烤,砌体经干燥,脱水和升温阶段,使炉温达到900~1000发热涂料以上,为焦炉过渡到生产状态作准备。因此烘炉过程中冷、热态之间的热膨胀冷缩十分突出,烘炉质量的好坏,关键在于焦炉砌体从冷态转化为热态时,对砌体膨胀速度和膨胀量的处理,确保焦炉不致因膨胀而损坏。 焦炉烘炉是一个比较复杂的过程,它包括热工、铁件及膨胀量的管理,同时在烘炉期间还要进行许多热态工程,涉及到土建、设备安装,备煤及回收车间的开工准备。下面就几个主要问题进行讨论。 B% .vEk) *
一、几种不同燃料的烘炉方法 mnG\qsKNLK
1 烘炉的方法    根据烘炉燃料的不同,有三种烘炉方法,即气体燃料、液体燃料和固体燃料烘炉,它们各有特点:气体燃料烘炉,升温管理方便,调节灵活准确,节省人力,燃料消耗小,开工操作简便,因此有气体燃料供应时,应力争用气体燃料烘炉。 用固体燃料烘炉,工人劳动强度大,炉温不易控制,尤其到高温阶段,升温较困难,但烘炉设备简单,燃料较易
解决,故在第一座焦炉烘炉时,无气体燃料供应时,仍被广泛采用。 液体燃料烘炉时克服了固体燃料烘炉的主要缺点:升温管理方便,节省人力,但烘炉费用较高。目前采用喷嘴上的针型阀调节油量,准确性较差,因此温度均匀性较气体燃料烘炉时为差。近年来不少厂在第一座焦炉烘炉时常被采用。 r 'bPS u ,
2 对烘炉燃料的要求 固体燃料:烘炉用煤最好是挥发分大于30%,灰分低于16%,且灰熔点高于1300果蔬纤维代餐粉的块煤。尤其在改为内部炉灶加热时,因为设炉篦,通风条件差,要求煤料的块度要大,后期应采用大于80mm的块煤,以保证煤能正常燃烧。灰熔点低可能将火床与炭化室墙烧结或炉墙接渣,对此必须重视。固体燃料烘炉时,干燥阶段最好用焦炭加热,因为焦炭燃烧后生成水分,火焰较稳定,燃烧时间长,这样有利于砌体干燥。 对液体燃料的主要要求是:油内没有固体杂质,80时的恩氏粘度小于2(以保证其流动性),加热至80~85时不起泡沫且无明显的气化。液体燃料可用赤油(仅提取出轻质馏分的石油原油)、重油、焦油和柴油等,前三种油因其凝固点低、贮油和运输系统均需加热保温。重油和焦油中含有大量的固体颗粒。焦油中含有较多的水分。因此烘炉初期(200散打护具以前)因用油量较少,炉膛温度低,使用前三种油困难较多。条件允许时,最好烘炉初期采用燃点低、粘度小、流动性好的且杂质较小的轻采油,中后期采用重柴油或重油。 气体
燃料有焦炉煤气、高炉煤气和发生炉煤气,后两者为贫煤气,贫煤气的主要可燃成分是CO,燃烧后生成的化合水很少,有利于炉体的干燥。且由于发热值低,载热体体积大,故有利于温度均匀分布。但贫煤气毒性大,因此要防止灭火,保证完全燃烧,贫煤气烘炉,在低温阶段由于其燃烧点低,耗量少而容易灭火,故煤气小支管上最好配上填有粘土砖粒的网状烧嘴,烘炉后期(750以后)有可能出现升温困难,可混入部分焦炉煤气。焦炉煤气要求含焦油雾少,发生炉煤气要求含尘量低,以免堵塞小支管上的孔板。 3  烘炉设施和气体流动途径 烘炉点火前,在各炭化室的机焦侧炉门处,都应砌好封墙、火床和烘炉临时小灶。燃料不同,火床和烘炉小灶也略有不同。图6为气体燃料烘炉时,加热设备配置和气体流动途径。 烘炉小灶分为炉膛和混合室两部分,中间隔以挡火墙,燃料在炉膛内燃烧,废气越过挡火墙而进入混合室,在此可以混入二次空气以控制废气温度和增加废气量。固体燃料烘炉时,烘炉小灶炉膛容积比气体燃料烘炉小灶炉膛大,且设有炉箅子。 火床(即内部炉灶)系由炭化室封墙,炭化室内部及两侧衬转所组成,为了防止火床与炭化室烧结,火床底层与炭化室底之间铺有一层石英砂,火床底层及炉墙间均留有膨胀缝,以免烘炉过程中火床与炉墙间挤压得太紧,开工时扒出困难,而影响顺利开工。为了防止火墙倒塌,两侧衬墙间有若干支撑砖。 气体燃料烘炉时,为使燃烧稳定和砖均匀受热膨胀,
火床内还设有格子砖,但火床高度和深度比固体燃料烘炉时要小。 用液体燃料烘炉时,低温阶段为减小炉膛容积,增大燃烧的节流量,以便燃烧正常,避免熄火,相邻两个炭化室设置一个小灶:中后期则转为直接在内部炉灶燃烧。 根据烘炉燃料的不同,炭化室封墙上留有必要的孔眼以供观查,测量温度及投入燃料用,所有封墙及小灶的各气流孔尺寸应一致,保证烘炉的均匀性。 气体或液体燃料烘炉时,在机、焦侧炉台上要安设临时管道,管道的布置要便于操作,安全可靠,并尽量避免影响其它工作。 我国6m大型焦炉在烘炉时以炉门代替封墙,不设外部烘炉小灶直接在炭化室内火床加热烘炉,取得完全成功,首钢焦化厂和石家庄焦化厂均曾用此法烘炉,焦炉现已顺利投产,节约了大量的人力、财力,并避免了投产时扒封墙紧张操作。 烘炉时燃料在烘炉小灶内燃料后,产生的废气由炭化室上升经烘炉孔至燃烧室各立火道下降,在经斜道、蓄热室、小烟道、废气盘、分烟道,总烟道最后由烟囱排入大气。 UA 8*8% v
二、烘炉的准备设备防护箱 J -k /#A4o
烘炉期间工程量大,时间短,充分作好烘炉前的准备工作,是保证烘炉顺利进行,提高烘炉质量的主要环节。 MB !_G[R
1 烘炉前必须完工的工程 (1)烟囱和烟道工程  烟囱全部合格验收,烟道勾缝完毕,膨胀缝清扫干净,测温、测压管理设好,砌好烘炉小灶及燃料管道。 (2)炉体砌砖清扫  作出炭化室冷态检查记录,炉体及炉墙30mm膨胀缝的清扫,炉体正面膨胀缝用石棉绳填塞,砌筑临时小炉头。 (3)各部位的密封工作  上升管孔可用备用装煤孔盖盖严,装煤孔盖周边用灰浆封严,密封小烟道口,废气开闭器底座及蓄热室封墙,保护板炉门框上部作好防雨覆盖层(垫上一层马粪纸,上面抹水泥沙浆)。 (4)安装工程  包括:护炉铁件(炉门框、保护板、炉柱、拉调和弹簧)、废气开闭器、机、焦侧作业合、测量线架及测量走台、抵抗墙中心卡钉埋设。 (5)烘炉点火前的准备工作  包括:1)炉室编号和测点作标记;蓄热室、燃烧室编号。炉长、炉高和弹簧等测点,炉端墙30mm膨胀缝测点,炉柱和保护板间隙测点等。2)测量各种原始记录:包括燃烧室、蓄热室、蓖子砖、小烟道等处的温度,总烟道分烟道的温度及吸力,抵抗墙温度,大气温度,炉柱曲度及大小弹簧的负荷,纵拉条提起高度及弹簧负荷,炉门框上移,炉柱和保护板间隙,机焦侧作业台及抵抗墙倾斜度,炉高与炉长等。 (6)烘炉人员配备 (7)烘炉燃料的准备  根据烘炉方式的不同,固体、液体和气体燃料的需要量和许多因素有关,如烘炉速度的快慢,保温时间的长短等。 (8)其它准备工作 1)烘炉所需的各种消耗材料及工具如:热电偶、各种温度计
、各种压力(吸力)表、光学高温计等。 2)备煤、筛焦系统和初冷、终冷系统的工程要全部完工并达到试运转条件或大部分完工。(特别是鼓风机安装情况要达到试运转条件) SJJ[y"GvD
2  烘炉升温计划的制定 整个烘炉过程可分为干燥和升温两个阶段,不同阶段制定升温计划的依据也不同。干燥期主要是保证砌体内部的水分向外扩散与砌体表面水分蒸发速度协调;升温阶段主要考虑使砌体各部位缓慢而均匀地膨胀,而相关设备仍处于冷态,但它们都跟砌体各区间的温度比例及耐火材料的膨胀性相关联。 因此整个烘炉升温计划要根据上述因素予以制定。 (1)干燥期的确定  一座刚砌成的58型焦炉(42孔),砌体总含水量约有300t左右,这些水分要在焦炉正常升温前排出,干燥期就是把炉温升到100所需的天书。实际上炉温达到100时,砌体水分并未全部排净,仅为习惯上的划分。 砌体干燥前,内部水分与表面含水基本上是均匀的,干燥开始后,表面水分首先被热气流带走,砌体内部与表面含水的平衡被破坏,水分由内内部扩散到表面,然后又被热气流带走,一直到砌体完全干燥。砌体内部水分向外的扩散速度与温度有关,温度愈高,扩散速度愈快,但当温度过高时,内部水分将直接被气化并产生相当大的压力而从砌体的灰缝中冲出,使灰缝变得疏松,从而破坏了砌体的严密性。此外,速度太快还会出现另一种不利情况,因热气流在通过炭化室、燃烧室、斜道、蓄热室、小烟道等部位时,温度逐渐将下来,如果
加大干燥速度,将使各处的温度增加,在燃烧室达到饱和的热气流,在流至砌体下部时,由于温度降低,其中水汽就可能在小烟道冷却下来,这样不仅延长了下部砌体的干燥期,还会冲刷灰缝;破坏砌体的完整,影响砌体的坚固性和严密性。在烘炉中必须防止这种情况的发生。所以砌体的干燥速度不能太快。干燥期取决于砌体的水分含量,砌砖时的节气,烘炉用燃料及烘炉初期的空气过剩稀疏,一般以6-10天为宜。 (2)日膨胀率的选择  焦炉砌体大部分由硅砖砌成。由前已知硅砖受热膨胀是不均匀的,它在117、163、180~270等温度时,由于晶型转变,体积急剧变化,硅砖本身及砌体间将会产生很大的内应力,以致产生裂纹或把砌体拉开而破坏其严密性。 升温速度越快,各部位的温差就大,就越容易产生破坏性拉力。为了防止这种破坏性膨胀的发生,用日膨胀率这个指标来控制升温速度。根据多年的实践经验,认为在400以前按日最大膨胀率为0.035%计划升温,400以后按0.05%升温较好。选取多大的日膨胀率,即烘炉速度的快慢,除决定于耐火材料的性质外,还和烘炉方法、操作管理水平,热态工程进度和施工力量等多方面因素有关。因此应根据不同情况制定出先进、可靠的烘炉升温计划。 (3)砖样膨胀曲线的测定  砖样的膨胀特性是制定烘炉升温计划的主要依据,通常从燃烧室、斜道区、蓄热室三个区域中选取横向和高向膨胀有代表性的砖号,即用量最多,砖型尺寸较大,制作较困难的
砖号,测定其膨胀曲线。 (4)上下部温度在各温度区间的比例  由于焦炉高向温度分布不同和硅砖的非线性膨胀性质,焦炉各部位的膨胀量和膨胀速度是不同的,为保持焦炉各部位尽量能相应地膨胀,使相对位移达到最小。不致把砌体拉开,以及产生不合理的相对位移,在干燥期又能有效地将砌体内的水分排出,因而在烘炉过程中焦炉各部位的温度要控制一定的比例。 烘炉过程中炉体上下部的温度比例,由硅砖的热膨胀性质而定。 以某厂生产的硅砖为例:加热至850时的总膨胀量为1.268%,而其中0~300的膨胀量0.762%,(0~100为0.08%)占总膨胀量的60%,则在100~300范围内每隔1的温差相对应的膨胀量为 =0.0034%,而在300~850范围内每隔1的膨胀量为 =0.001%,前者为后者的3.4倍。由此可见300以上下部位移较大。 为此要求300以前蓄热室的温度为燃烧室温度的95%,随着温度的上升此比例可以逐步递减,但到烘炉末期仍不应低于85%。 小烟道温度,初期为燃烧室温度的85%左右为好,末期应接近正常生产温度,不可过低,以免发生小烟道温度剧烈降低产生收缩而干裂。破坏砌体的严密性,小烟道温度过高会引起基础平台过热,并使其变形、开裂。 根据上述的四个条件,可以制定烘炉升温计划。首先根据砖样膨胀曲线、焦炉上下部位的温度比例及规定的日膨胀率,计算出每一温度区间的烘炉天数,然后再根据采用的天数计算出各温度区间的每日升温数及日最大膨胀量,并列表绘出升温和膨胀曲线。表11为某58-型焦炉的烘炉升温计划。 @CUYl* .PD
>H无穷控制LMI

本文发布于:2024-09-23 01:30:26,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/272293.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:烘炉   温度   膨胀
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议