一种成形性能优良的高屈强比冷轧钢板及其制造方法与流程



1.本发明涉及汽车用冷轧高强度薄板技术领域,尤其涉及一种成形性能优良的高屈强比冷轧钢板及其制造方法,所制造的钢板可用作汽车的结构件,如汽车的骨架构件、地板梁、座椅滑轨、保险杠以及车门防撞梁等零部件。


背景技术:



2.汽车工业的发展趋势为高安全、减重化和低能耗,为适应这一发展趋势,钢铁生产企业和科研院所正积极致力于汽车车身“轻量化”产品的研发,汽车制造厂家也投入大量精力进行汽车车身及高强钢零部件的设计。目前开发出的汽车用冷轧高强度钢如双相(dp)钢、相变诱发塑性(trip)钢、孪生诱导塑性(twip)钢、淬火配分(q&p)钢和复相(cp)钢等已工业化量产,用于汽车的骨架构件、车门防撞梁、保险杠以及座椅滑轨等零部件上,实现了汽车车身“轻量化”要求。汽车工业的发展趋势为高安全、减重化和低能耗,为适应这一发展趋势,钢铁生产企业和科研院所正积极致力于汽车车身“轻量化”产品的研发,汽车制造厂家也投入大量精力进行汽车车身及高强钢零部件的设计。目前开发出的高强度钢如双相(dp)钢、相变诱发塑性(trip)钢、孪生诱导塑性(twip)钢和淬火配分(q&p)钢等汽车用冷轧高强度钢已工业化量产,用于汽车的骨架构件、车门防撞梁、保险杠以及座椅滑轨等零部件上,实现了汽车车身“轻量化”要求。这些冷轧高强钢板的屈服强度与抗拉强度的比值均小于0.8,用这些材料制造的车体骨架等结构件刚度一般,在汽车受到碰撞时吸收冲击能的能力有限,不能最大限度地保护驾乘人员的安全。并且,生产这些冷轧高强度钢,对连续退火炉的冷却段和时效段能力要求较高,退火工艺控制苛刻,生产难度高。为降低冷轧高强度钢生产难度,并保证用高强度钢板制造的车身具有足够的强度和刚度,需要在冷轧钢板的成分中添加微合金化元素,并对生产工艺进行改进,使冷轧钢板具有优良的成形性能并兼具高屈强比和塑性。
3.专利文件cn101558178a提供一种具有高屈强比和优良耐候性的冷轧钢板,该钢种成分中加入了nb、cr、ni、cu、co和b等合金元素,钢板冷轧后在500℃至a1转变点的温度范围内连续退火,得到钢板的屈强比大于0.85,抗拉强度大于800mpa,主要用于建筑、轨道交通工具和集装箱制造,与汽车用高屈服比冷轧高强度钢板的产品和连续退火工艺没有可比性。
4.专利文件cn 105695871 b公开一种弯曲加工性和碰撞特性优异的高屈服比型冷轧钢板及其制造方法,其成品板经过热轧后,通过一次轧制,在510~600℃温度下进行一次间歇退火处理,然后再进行二次轧制,并在520~620℃温度下进行二次间歇退火处理和平整,得到的钢板屈服强度在800mpa以上,抗张强度在830mpa以上、屈服比在0.95以上、弯曲加工性(r/t)在1.0以下。其生产过程需要两次冷轧和两次退火,生产工序多,实际操作困难。
5.专利文件cn101376944a涉及一种高强度高屈强比冷轧钢板及其制造方法,其钢板的屈服强度大于500mpa,抗拉强度大于600mpa,屈强比大于0.80。为获得这种强度大于
600mpa,屈强比大于0.80的钢板,在退火过程中,将钢板加热至780-850℃保温后通过两段式快速冷却到200℃以下,此工艺第一段从高温快冷容易控制,而第二段从400-500℃的较低温度下快速冷却到200℃以下,对依靠气体冷却方式的连续退火线生产来说难度很大,不具备实际操作性。
6.本发明通过钢钟冶炼成分和生产工艺上的有效控制,实现钢板的铁素体晶粒细化,析出强化和相变强化的复合强化效果,以获得冷轧钢板具有高的屈强比和良好的成形性能,满足冷轧高强度钢板制造的汽车零部件具有足够的强度和刚度,实现车体减重,驾乘人员安全。


技术实现要素:



7.本发明提供了一种成形性能优良的高屈强比冷轧钢板及其制造方法,是一种能够在工业连续退火线上较容易地制造出屈服强度在900mpa以上,抗拉强度大于1000mpa,断后延伸率大于10.0%,屈强比大于0.90,扩孔率大于50%的高屈强比,且塑性和成形性能优良的冷轧钢板及其制造方法。
8.为了达到上述目的,本发明采用以下技术方案实现:
9.本发明通过控制钢的冶炼成分、热轧、冷轧和连续退火工艺参数,保证钢板具有高的屈强比和优良的塑性及成形性能。
10.一种成形性能优良的高屈强比冷轧钢板,钢中化学成分按重量百分比计为:c0.060%~0.120%、si 0.20%~0.60%、mn 1.00%~2.00%、p≤0.015%、s≤0.010%、al0.030%~0.100%、n≤0.005%、nb 0.020%~0.050%、ti 0.050%~0.100%、cr 0.050%~0.100%、cu 0.10%~0.60%、sb 0.015%~0.050%、ni 0.050%~0.100%、稀土元素0.007%~0.015%;同时满足9.5%≤10c+7mn+25cr≤16.5%,并且2.1%≤47nb+12ti≤3.0%,余量为fe和不可避免的杂质。
11.钢中优选的化学成分按重量百分比计为:c 0.070%~0.110%、si 0.30%~0.50%、mn1.15%~1.85%、p≤0.010%、s≤0.005%、al 0.050%~0.080%、n≤0.003%、nb 0.025%~0.045%、ti 0.060%~0.090%,cr 0.065%~0.085%、cu 0.20%~0.50%、sb 0.025%~0.040%、ni 0.065%~0.085%、稀土元素0.008%~0.012%;同时满足11.0%≤10c+7mn+25cr≤15.5%,并且2.25%≤47nb+12ti≤2.85%,余量为fe和不可避免的杂质。
12.本发明钢种成分控制原理如下:
13.c:是钢中基本的强化元素,能有效平衡钢的强度和延展性。也是有效生成贝氏体的元素,为保证钢的高屈强比,本发明中c控制在0.060%~0.120%,更优选0.070%~0.110%。并且11.0%≤10c+7mn+25cr≤15.5%。
14.si:是铁素体生成元素,促使碳向奥氏体偏聚及抑制碳化物的形成,对铁素体中固溶碳有清除和净化作用,以避免间隙固溶强化。本发明主要依靠铌钛的碳氮化物在铁素体相中的析出强化,以及晶粒细化来提高铁素体强度,以达到钢板有高的屈服强度。因此,本发明中si控制在0.20%~0.60%,更优选0.30%~0.50%。
15.mn:属于扩大奥氏体相区,稳定奥氏体的元素,可以有效提高奥氏体岛的淬透性,因而可以降低钢板中温转变后剩余的奥氏体转变成马氏体所必须的冷却速率,并起到固溶
强化和细化铁素体晶粒的作用。高锰含量容易引起渗碳体、珠光体和贝氏体为主的带状组织,并且影响钢板的焊接性能。本发明mn含量控制在1.00%~2.00%,更优选1.15%~1.85%。并且11.0%≤10c+7mn+25cr≤15.5%。
16.al:al是主要的脱氧剂,同时al还可以形成aln析出,起到一定的细化晶粒作用。钢中al用于脱氧被添加时,不宜过低,否则mn、si等粗大的氧化物在钢中大量分散,劣化钢质,但过多簇状氧化铝内夹杂物增多,使钢的塑性和焊接性变差,又会影响炼钢和连铸生产,本发明中al含量控制在0.030%~0.100%,更优选0.050%~0.080%。
17.nb,ti:具有析出强化作用,是有效提高钢的屈服强度和细化晶粒的元素。钢中加入nb和ti元素,形成碳氮化物,细化晶粒尺寸并保持碳的作用。使铁素体基体得到强化,降低铁素体与珠光体和贝氏体相的硬度差,有效提高钢板的屈服强度和冷成形性能。为使细化铁素体晶粒尺寸和提高铁素体的强度,本发明nb,ti的含量控制在0.020~0.050%和0.050%~0.100%,更优选0.025%~0.045%和0.060%~0.090%,并且优先满足2.25%≤47nb+12ti≤2.85%。
18.cr:中强碳化物形成元素,显著提高强度、硬度和耐磨性,能提高钢的抗氧化性和耐腐蚀性,使a3和a1温度升高,gs线向左上方移动。本发明cr的含量控制在0.050%~0.100%,更优选0.065%~0.085%。并且11.0%≤10c+7mn+25cr≤15.5%。
19.cu:钢强化元素和提高钢的耐腐蚀性元素,同时,cu能提高奥氏体的稳定性,有利于贝氏体的形成。cu的析出物能提高钢的强度和硬度,并且cu析出相具有良好的塑性,而不易在cu析出相附近产生的高应力集中区或裂纹,有利于提高钢板的使用寿命。另外,cu可提高钢的抗腐蚀性能并能消除s对抗腐蚀性能的不良影响。本发明中cu含量控制在0.10%~0.60%,更优选0.20%~0.50%。
20.sb:是一种低熔点元素,能改善钢液流动性,阻碍碳原子扩散,明显促进和稳定珠光体形成,提高基体硬度,同时能抑制钢基体被腐蚀,并且sb在mns夹杂物上的富集析出,能促进钢中晶内铁素体的形成,有利于提高钢的塑性。本发明sb含量控制在0.015%~0.050%,更优选0.025%~0.040%。
21.ni:是奥氏体化的有效元素,可阻止加cu钢在连铸过程中的断裂。能降低钢的临界冷却速度,提高钢的淬透性和强度,而不降低其塑性,改善钢的低温韧性和抗疲劳性。另外,ni具有一定耐蚀性,对一些还原性酸类有良好的耐蚀能力。本发明中ni含量控制在0.050~0.100%,更优选0.065~0.085%。
22.n:在钢板中使氮化物析出,有助于强化钢板,但过剩,则氮化物大量析出,引起延伸率、焊接性劣化和钢板的冷成形性能变差,本发明中n含量控制在0.005%以下,更优选0.003%以下。
23.p,s:为钢中的有害元素。p易在晶界上偏聚引起脆化,s在钢中易形成mns等夹杂物,使钢的韧塑性变差。本发明中p,s含量分别控制在0.015%和0.010%以下,更优选0.010%和0.005%以下。
24.稀土元素(la、ce):稀土具有很强的脱氧、脱硫和净化并强化晶界作用,可与钢中有害杂质元素发生交互反应,有效改善钢材中氧、硫夹杂物的形态,减少其对钢性能的危害,并且具有固溶强化和提高钢板韧性作用,改善钢板的拉伸性能、杯突值和扩孔性能及冷弯性能等加工成形性能。同时,在钢中形成均匀分布的团球状稀土硫氧化物或稀土硫化物,
减弱钢中微区域电化学腐蚀,可提高耐大气腐蚀性能。本发明中稀土元素含量控制在0.007%~0.015%,更优选0.008%~0.012%。
25.本发明钢板屈服强度大于900mpa,抗拉强度在1000mpa以上,断后延伸率大于10.0%,屈强比r
p0.2
/rm大于0.90,扩孔率λ大于50%。
26.钢板厚度为0.5~2.5mm。
27.一种成形性能优良的高屈强比冷轧钢板的制造方法,生产工序包括转炉冶炼,炉外精炼后连铸,热连轧、酸洗冷轧、连续退火处理,平整等,具体包括如下方法:
28.1)热连轧加热制度:为节约能源,降低成本,板坯在连铸后热送热装,加热保温后进行热连轧,不能直送装炉的铸坯应堆垛或放入缓冷坑慢冷,加热炉预热段加热速度3~7℃/min,预热段炉气温度600~900℃,铸坯进入加热段温度控制在500~650℃;热连轧时,将板坯加热到1200~1250℃均热,均热时间150~180min;
29.2)铸坯出炉后粗轧并进行高压水除鳞,高压水出口压力为18~20mpa,粗轧出口温度为1050~1150℃,中间坯厚度为50~55mm;
30.3)中间坯在进热轧精轧机组前的辊道上投入保温罩保温,并提高轧制节奏,减轻中间坯在板宽方向上温降差,保证精轧入口温度和轧制的稳定性。精轧前高压水除鳞,精轧开轧温度为1050~1100℃,终轧温度为900~950℃,卷取温度450~500℃,头尾50米升温60~100℃,得到显微组织为铁素体、贝氏体和珠光体的热轧卷板,热轧卷板厚度为2.0~7.0mm;
31.4)酸洗后冷轧压下率控制在55~80%,冷轧后的卷板厚度为0.5~2.5mm;
32.5)钢带在退火炉的保温段温度为720~770℃,加热及均热保温时间为350~550s,钢带保温后,采用先缓慢冷却后快速冷却两段式冷却,缓冷段将钢带从保温温度冷却到550~650℃,冷却速率为3~8℃/s;快冷段以15~25℃/s的冷却速率将钢带冷却到400~460℃,然后在400~460℃下进行过时效处理,过时效时间300~550s,时效后水冷、平整卷取。
33.上述步骤2)中,铸坯出炉后进行3道次粗轧,其中1、3道次高压水除鳞,除鳞箱上下2排喷水集管同时开启。
34.上述步骤3)中,精轧采用大张力轧制,精轧机架f1和f2机架间张力控制在15~20n/mm2,精轧机架f2和f3机架间张力控制在20~30n/mm2,精轧机架f3和f4机架间张力控制在15~20n/mm2,精轧机架f4和f5机架间张力控制在12~17n/mm2,精轧机架f5和f6机架间张力控制在9~15n/mm2,精轧机架f6和f7机架间张力控制在7~10n/mm2;同时,f1机架压缩比控制在27%~32%,f2~f4机架采用大压下量轧制,压缩比控制在70%~90%,f5和f6机架压缩比控制在12%~17%,f7机架压缩比控制在7%~10%。f2、f4、f6机架后采用高水压低水量除鳞,其余机架间冷却水全部关闭。
35.上述步骤4)中,酸洗后冷轧基板在三架四辊加首末两架六辊组合机上进行张力轧制,冷轧压下率逐架减小,机架间板带张力控制为:入口张力300~350n/mm2,f1~f2机架间张力450~500n/mm2,f2~f3机架间张力350~400n/mm2,f3~f4机架间张力425~485n/mm2,f4~f5机架间张力320~380n/mm2,出口张力120~160n/mm2,冷轧轧制辊采用乳化液进行工艺润滑。
36.本发明选择上述各特征中工艺参数的原因如下:
37.连铸坯热装热送进行加热轧制,不能直送装炉的铸坯应堆垛或放入缓冷坑慢冷,
需要轧制时冷坯装炉后分段预热,防止加热过快出现断坯。板坯在炉内均热温度为1200~1250℃,均热时间为150~180min。均热温度控制在1200℃以上,为增加nb的固溶量,提高析出强化效果,但均热温度不能高于1250℃,以避免板坯过热和过烧,以及cu在晶界偏聚导致的高温热脆。均热时间控制在150~180min之间,为使板坯的组织和成分充分均匀化,并避免加热时间过长产生的能源消耗。
38.粗轧时高压水充分除鳞,避免氧化铁皮在精轧是压入钢板基体,并且辊道扣罩,降低中间板坯宽度方向的温差,提高轧后组织均匀一致,改善热轧板的表面和板形。精轧开轧温度控制在1050~1100℃之间,是为了精轧的前几个机架实现再结晶区轧制,并采用大张力控制轧制,降低前几个机架大压下量下的轧机轧制负荷。
39.终轧温度控制在900~950℃之间,是为了合金元素固溶,在退火中析出以细化晶粒。并且,在ar3以上高温终轧,有利于组织均匀性,防止变形织构、各向异性以及带状组织的产生。终轧温度不宜超过950℃,以防止再结晶晶粒过度异常长大和铜析出。同时,过高的终轧温度导致氧化物的生成量急剧增大,酸洗冷轧后的钢板表面质量变差,降低钢板的塑性。
40.卷取温度控制在450~500℃之间,此温度区间下卷取,实现中低温相变,也能有效细化珠光体,并且可以防止铌钛的碳氮化物析出物粗化和铁素体晶粒长大。同时,有利于cu析出物析出,起到析出强化效果。
41.为充分发挥冷轧机组轧制能力,热轧卷板后酸洗后冷轧压下率控制在55%~80%之间,并且机架间张力合理控制,保证板形和轧制平稳。冷轧压下率低于55%,冷轧效率低,且破碎热轧组织效果差。冷轧压下率高于80%,加工硬化加强,冷轧变形抗力增加,易造成冷轧机组负荷超限,并容易产生轧制断带。另外,此压下率下钢组织中的珠光体团间距减小和珠光体被破碎得较充分,为退火过程中的晶粒细化提供条件。
42.连续退火时均热温度应控制在720~770℃之间,加热及均热保温时间为350~550s。为使钢中的部分珠光体转变为奥氏体及c、mn等合金元素从铁素体中向奥氏体中扩散,提高奥氏体的稳定性。均热温度低于720℃,钢的组织未能奥氏体化,冷却时不能得到一定量的贝氏体。均热温度高于770℃,奥氏体量增多但溶入其中的合金量相对较少,中低温转变的下转变临界冷速提高,钢带冷却时不易获得贝氏体和马氏体,同时因cu的析出物粗化而弱化cu析出强化效果,使钢的屈服强度降低。
43.在连续退火线缓冷段将钢带从均热温度冷却到550~650℃,冷却速率为3~8℃/s,是为调节钢中奥氏体的数量和分布,改善合金元素在奥氏体和铁素体中的分布形态。快冷段以15~25℃/s的冷却速率,将钢板冷却到400~460℃,是为生成的中低温转变产物贝氏体和马氏体及cu的沉淀物,钢板快冷后过时效300~550s,使cu沉淀物进一步析出,提高钢的屈服强度,同时可协调贝氏体与铁素体的硬度差,提高钢板的塑性。
44.与现有技术相比,本发明的有益效果是:
45.本发明钢冶炼时通过控制c、si、mn和cr元素的含量,并复合添加一定量的nb和ti元素,以及sb、cu和ni等元素,可添加少量稀土元素改善钢材加工成形性能。同时热轧时的控轧控冷得到合理的热轧组织和表面及板形优良的热轧基板,并在冷轧时控制轧制;连续退火时采用加热并均热后的缓冷和快冷段两次冷却方式,最终得到屈服强度大于900mpa,抗拉强度在1000mpa以上,断后延伸率大于10.0%,屈强比rp
0.2
/rm大于0.90,扩孔率λ大于
50%,厚度在0.5~2.5mm之间的高屈强比且塑性和冷成形性能优良的冷轧板,制造的冷轧板可用作汽车加强件和结构件,满足汽车车身对强度和刚度的要求。
附图说明
46.图1为实施例1冷轧退火钢板的精细结构。
47.图2为实施例1退火板组织中铌钛的碳氮化物。
48.图3为实施例1退火板组织中铜的析出物。
具体实施方式
49.为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
50.下面通过一些实施例对本发明进一步说明。实施例钢的成分见表1,热轧工艺参数见表2,连续退火工艺参数见表3,连续退火钢板的力学性能见表4。实施例1的冷轧退火板的精细结构见图1,退火板组织中铌钛的碳氮化物见图2,退火板组织中铜的析出物见图3。
51.表1实施例钢的化学成分(质量分数)%
[0052][0053]
表2实施例钢的轧制工艺参数
[0054][0055]
表3实施例钢的连续退火工艺参数
[0056][0057]
表4实施例钢退火板的力学性能
[0058][0059]
按本发明设计的化学成分,实施例的钢经转炉冶炼连铸,铸坯厚度为170~230mm,依照设定的热轧工艺控轧控冷,特别是头尾50米升温60~100℃,得到厚度为2.0~7.0mm,板形和表面质量良好的热轧板,热轧板组织由铁素体、贝氏体和珠光体组成,铁素体晶粒尺寸细小。热轧板经酸洗冷轧成0.5~2.5mm的基板,然后在连续退火线上进行退火,最终得到的钢板组织由铁素体、贝氏体和少量珠光体和马氏体组成,并且有大量细小弥散分布的铌钛的碳氮化物析出物,以及铜的析出物,起到强化铁素体作用,提高了冷轧退火钢板的屈服强度。制备出的冷轧钢板屈服强度大于900mpa,抗拉强度在1000mpa以上,断后延伸率大于10.0%,屈强比r
p0.2
/rm>0.90,扩孔率λ>50%,屈服强度高且塑性和冷成形性能优良。

技术特征:


1.一种成形性能优良的高屈强比冷轧钢板,其特征在于,钢中化学成分按重量百分比计为:c 0.060%~0.120%、si 0.20%~0.60%、mn 1.00%~2.00%、p≤0.015%、s≤0.010%、al 0.030%~0.100%、n≤0.005%、nb 0.020%~0.050%、ti 0.050%~0.100%、cr 0.050%~0.100%、cu 0.10%~0.60%、sb 0.015%~0.050%、ni 0.050%~0.100%、稀土元素0.007%~0.015%;同时满足9.5%≤10c+7mn+25cr≤16.5%,并且2.1%≤47nb+12ti≤3.0%,余量为fe和不可避免的杂质。2.根据权利要求1所述的一种成形性能优良的高屈强比冷轧钢板,其特征在于,钢中化学成分按重量百分比计为:c 0.070%~0.110%、si 0.30%~0.50%、mn 1.15%~1.85%、p≤0.010%、s≤0.005%、al 0.050%~0.080%、n≤0.003%、nb 0.025%~0.045%、ti 0.060%~0.090%,cr 0.065%~0.085%、cu 0.20%~0.50%、sb 0.025%~0.040%、ni 0.065%~0.085%、稀土元素0.008%~0.012%;同时满足11.0%≤10c+7mn+25cr≤15.5%,并且2.25%≤47nb+12ti≤2.85%,余量为fe和不可避免的杂质。3.根据权利要求1或2所述的一种成形性能优良的高屈强比冷轧钢板,其特征在于,钢板屈服强度大于900mpa,抗拉强度在1000mpa以上,断后延伸率大于10.0%,屈强比r
p0.2
/r
m
大于0.90,扩孔率λ大于50%。4.根据权利要求1或2所述的一种成形性能优良的高屈强比冷轧钢板,其特征在于,钢板厚度为0.5~2.5mm。5.一种如权利要求1-4其中任意一项所述的成形性能优良的高屈强比冷轧钢板的制造方法,其特征在于,包括如下方法:1)热连轧加热制度:加热炉预热段加热速度3~7℃/min,预热段炉气温度600~900℃,铸坯进入加热段温度控制在500~650℃;热连轧时,将板坯加热到1200~1250℃均热,均热时间150~180min;2)铸坯出炉后粗轧并进行高压水除鳞,高压水出口压力为18~20mpa,粗轧出口温度为1050~1150℃,中间坯厚度为50~55mm;3)中间坯在进热轧精轧机组前的辊道上投入保温罩保温,精轧开轧温度为1050~1100℃,终轧温度为900~950℃,卷取温度450~500℃,热轧卷板厚度为2.0~7.0mm;4)酸洗后冷轧压下率控制在55~80%;5)钢带在退火炉的保温段温度为720~770℃,加热及均热保温时间为350~550s,钢带保温后,采用先缓慢冷却后快速冷却两段式冷却,缓冷段将钢带从保温温度冷却到550~650℃,冷却速率为3~8℃/s;快冷段以15~25℃/s的冷却速率将钢带冷却到400~460℃,然后在400~460℃下进行过时效处理,过时效时间300~550s,时效后水冷、平整卷取。6.根据权利要求5所述的一种成形性能优良的高屈强比冷轧钢板的制造方法,其特征在于,上述步骤2)中,铸坯出炉后进行3道次粗轧,其中1、3道次高压水除鳞,除鳞箱上下2排喷水集管同时开启。7.根据权利要求5所述的一种成形性能优良的高屈强比冷轧钢板的制造方法,其特征在于,上述步骤3)中,精轧机架f1和f2机架间张力控制在15~20n/mm2,精轧机架f2和f3机架间张力控制在20~30n/mm2,精轧机架f3和f4机架间张力控制在15~20n/mm2,精轧机架f4和f5机架间张力控制在12~17n/mm2,精轧机架f5和f6机架间张力控制在9~15n/mm2,精轧机架f6和f7机架间张力控制在7~10n/mm2;同时,f1机架压缩比控制在27%~32%,f2~f4
机架压缩比控制在70%~90%,f5和f6机架压缩比控制在12%~17%,f7机架压缩比控制在7%~10%。8.根据权利要求5所述的一种成形性能优良的高屈强比冷轧钢板的制造方法,其特征在于,上述步骤4)中,酸洗后冷轧机架间板带张力控制为:入口张力300~350n/mm2,f1~f2机架间张力450~500n/mm2,f2~f3机架间张力350~400n/mm2,f3~f4机架间张力425~485n/mm2,f4~f5机架间张力320~380n/mm2,出口张力120~160n/mm2。

技术总结


一种成形性能优良的高屈强比冷轧钢板及其制造方法,钢中化学成分按重量比计为C0.060%~0.120%、Si0.20%~0.60%、Mn1.00%~2.00%、P≤0.015%、S≤0.010%、Al0.030%~0.100%、N≤0.005%、Nb0.020%~0.050%、Ti0.050%~0.100%、Cr0.050%~0.100%、Cu0.10%~0.60%、Sb0.015%~0.050%、Ni0.050%~0.100%、稀土元素0.007%~0.015%。钢板屈服强度≥900MPa,抗拉强度>1000MPa,断后延伸率>10.0%,屈强比>0.90,扩孔率>50%。扩孔率>50%。扩孔率>50%。


技术研发人员:

王科强 刘仁东 郭金宇 严平沅 李毅 靳友鹏 张峰 刘军友 孟静竹

受保护的技术使用者:

鞍钢股份有限公司

技术研发日:

2022.08.30

技术公布日:

2022/11/29

本文发布于:2024-09-22 01:11:08,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/24916.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:钢板   机架   性能   奥氏体
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议