或门电路

或门电路
目前实际应用的门电路都是集成电路。在集成电路设计过程中,将复杂的逻辑函数转换为具体的数字电路时,不管是手工设计还是EDA工具自动设计,通常要用到七种基本逻辑(与、或、非、与非、或非、同或、异或)的图形表示,在电路术语中这些逻辑操作符号被称作门,对应的具体电路就叫做门电路,包括某个基本逻辑或者多个基本逻辑组合的复杂逻辑。比如实现取反功能的反相器,就叫做非门;实现“先与后反”功能的就是与非门,如下图所示。与非门由两个N管和两个P管组成:P管并联,一端接电源;N管串联,一端接地。根据CMOS结构互补的思想,每个N管都会和一个P管组成一对,它们的栅极连在一起,作为与非门的输入;输出则在“串-并”结构的中间。当输入端A、B中只要有一个为0时,下面接地的通
路断开,而上面接电源的通路导通,就输出高电平1;而只有A、B同时为1时,才会使接地的两个串联NMOS管都导通,从而输出低电平0。而这正是与非门的逻辑:只有两个输入都为1时,输出为0;否则结果为1。
CMOS逻辑门电路
  CMOS逻辑门电路是在TTL电路问世之后 ,所开发出的第二种广泛应用的数字集成器件,从发展趋势来看,由于制造工艺的改进,CMOS电路的性能有可能超越TTL而成为占主导地位的逻辑器件 。CMOS电路的工作速度可与TTL相比较,而它的功耗和抗干扰能力则远优于TTL。此外,几乎所有的超大规模存储器件 ,以及PLD器件都采用CMOS艺制造,且费用较低。
  早期生产的CMOS门电路为4000系列 ,随后发展为4000B系列。当前与TTL兼容的CMO器件如74HCT系列等可与TTL器件交换使用。下面首先讨论CMOS反相器,然后介绍其他CMO逻辑门电路。

MOS管结构图
MOS管主要参数:
1.开启电压VT
  ·开启电压(又称阈值电压):使得源极S和漏极D之间开始形成导电沟道所需的栅极电压;
  ·标准的N沟道MOS管,VT约为3~6V;
  ·通过工艺上的改进,可以使MOS管的VT值降到2~3V。
2. 直流输入电阻RGS
  ·即在栅源极之间加的电压与栅极电流之比
  ·这一特性有时以流过栅极的栅流表示
  ·MOS管的RGS可以很容易地超过1010Ω。
引道结构图3. 漏源击穿电压BVDS
  ·在V异形注塑模板GS=0(增强型)的条件下 ,在增加漏源电压过程中使ID开始剧增时的VDS称为漏源击穿电压BVDS
  ·ID剧增的原因有下列两个方面:
  (1)漏极附近耗尽层的雪崩击穿
  (2)漏源极间的穿通击穿
  ·有些MOS管中,其沟道长度较短,不断增加VDS会使漏区的耗尽层一直扩展到源区,使沟道长度为零,即产生漏源间的穿通,穿通后
,源区中的多数载流子,将直接受耗尽层电场的吸引,到达漏区,产生大的I电烤箱温度控制系统D
4. 栅源击穿电压BVGS
  ·在增加栅源电压过程中,使栅极电流IG由零开始剧增时的VGS,称为栅源击穿电压BVGS
5. 低频跨导gm
  ·在VDS为某一固定数值的条件下 ,漏极电流的微变量和引起这个变化的栅源电压微变量之比称为跨导
  ·gm反映了栅源电压对漏极电流的控制能力
  ·是表征MOS管放大能力的一个重要参数
  ·一般在十分之几至几mA/V的范围内
6. 导通电阻RON
蒙砂膏
  ·导通电阻RON水气分离器说明了VDS对ID的影响 ,是漏极特性某一点切线的斜率的倒数内置式永磁同步电机
  ·在饱和区,ID几乎不随VDS改变,RON的数值很大 ,一般在几十千欧到几百千欧之间
  ·由于在数字电路中 ,MOS管导通时经常工作在VDS=0的状态下,所以这时的导通电阻RON可用原点的RON来近似
  ·对一般的MOS管而言,RON的数值在几百欧以内
7. 极间电容
  ·三个电极之间都存在着极间电容:栅源电容CGS 、栅漏电容CGD和漏源电容CDS
  ·CGS和CGD约为1~3pF
  ·CDS约在0.1~1pF之间
8. 低频噪声系数NF
  ·噪声是由管子内部载流子运动的不规则性所引起的
  ·由于它的存在,就使一个放大器即便在没有信号输人时,在输   出端也出现不规则的电压或电流变化
  ·噪声性能的大小通常用噪声系数NF来表示,它的单位为分贝(dB)
  ·这个数值越小,代表管子所产生的噪声越小
  ·低频噪声系数是在低频范围内测出的噪声系数
  ·场效应管的噪声系数约为几个分贝,它比双极性三极管的要小

本文发布于:2024-09-21 20:30:03,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/221598.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:逻辑   电压   电路   栅源   门电路   器件
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议