交流调压原理—可控硅

6.1 交流调压电路 
交流调压电路采用两单向晶闸管反并联(图6-1(ashlr))或双向晶闸(图6-1(b对旋轴流风机)),实现对交流电正、负半周的对称控制,达到方便地调节输出交流电压大小的目的,或实现交流电路的通、断控制。因此交流调压电路可用于异步电动机的调压调速、恒流软起动,交流负载的功率调节,灯光调节,供电系统无功调节,用作交流无触点开关、固态继电器等,应用领域十分广泛。
图6-1 交流调压电路
交流调压电路一般有三种控制方式,其原理如图6-2所示。
图6-2 交流调压电路控制方式
(1)通断控制
通断控制是在交流电压过零时刻导通或关断晶闸管,使负载电路与交流电源接通几个周波,然后再断开几个周波,通过改变导通周波数与关断周波数的比值,实现调节交流电压大小的目的。
通断控制时输出电压波形基本正弦,无低次谐波,但由于输出电压时有时无,电压调节不连续,会分解出分数次谐波。如用于异步电机调压调速,会因电机经常处于重合闸过程而出现大电流冲击,因此很少采用。一般用于电炉调温等交流功率调节的场合。
spi隔离芯片(2)相位控制
与可控整流的移相触发控制相似,在交流的正半周时触发导通正向晶闸管、负半周时触发导通反向晶闸管,且保持两晶闸的移相角相同,以保证向负载输出正、负半周对称的交流电压波形。
相位控制方法简单,能连续调节输出电压大小。但输出电压波形非正弦,含有丰富的低次谐波,在异步电机调压调速应用中会引起附加谐波损耗,产生脉动转矩等。
(3)斩波控制
斩波控制利用脉宽调制技术将交流电压波形分割成脉冲列,改变脉冲的占空比即可调节输出电压大小。
斩波控制输出电压大小可连续调节,谐波含量小,基本上克服了相位及通断控制的缺点。由于实现斩波控制的调压电路半周内需要实现较高频率的通、断,不能采用晶闸管,须采用高频自关断器件,如GTR、GTO、MOSFET、IGBT等。
实际应用中,采取相位控制的晶闸管型交流调压电路应用最广,本章将分别讨论单相及三相交流调压电路。
 
三角形算法6.1.1 单相交流调压电路
单相交流调压电路原理图如图6-1所示,其工作情况与负载性质密切相关。
1.电阻性负载
纯电阻负载时交流调压电路输出电压、输出电流波形如图6-3所示。电路工作过程是:在电源电压正半周、移相控制角时刻,触发导通晶闸管VT1,使正半周的交流电压施加到负载电阻上,电流、电压波形相同。当电压过零时,VT1因电流为零而关断。在控制角为时触发导通VT2,负半周交流电压施加在负载上,当电压再次过零时,VT2因电流为零而关断,完成一个周波的对称输出。
时,输出电压最大;当。改变控制角大小可获得大小可调的交流电压输出,其波形为“缺块”正弦波。正因为电压波形有缺损,才改变了输出电压有效值,达到了调压的目的,但也因波形非正弦带来了谐波问题。
交流输出电压有效值U与控制角的关系为
(6-1)
式中 为输入交流电压的有效值。
负载电流有效值为,则交流调压电路输入功率因数为
(6-2)
对图6-3所示电阻负载下输出电压进行谐波分析。由于正、负半波对称,频谱中将不含直流及偶次谐波,其富里叶级数表示为
(6-3)
式中
基波和各次谐波电压有效值为
(6-4)
根据式(6-4),可以绘出基波和各次谐波电压标么值随控制角的变化曲线,其电压基值取为DD LM0558。可以看出,随增大,波形畸变严重,谐波含量增大。由于电阻负载下电流、电压同相位,图6-4关系也适合于电流谐波分析。
综上所述,单相交流调压电路带电阻性负载时,控制角移相范围为,晶闸管导通角激光快速成型机,输出电压有效值调节范围为,可以采用单窄脉冲实现有效控制。

本文发布于:2024-09-22 03:29:41,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/220734.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:电压   交流   调压
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议