毕业论文机械设计制造及其自动化

轮式起重机伸缩臂液压
和电气控制系统设计
邹 勇
超声波电子驱鼠器
[摘  要] 起重臂是轮式起重机主要受力构件,一般设计制作为洗瓶箱形结构,起重臂内装有伸缩缸或伸缩系统和伸缩用滑块而具有伸缩功能,它的设计是否合理直接影响着起重机的整机自重承载能力、整机稳定性,同时决定着起重机的发展。起重伸缩控制技术取决于伸缩机构的结构形式,起重机的单缸插销式伸缩机构采用单个油缸来推动各节臂的伸缩采用机电液相结合的综合控制技术来实现单个伸缩油缸自动进行起重臂伸缩目标的控制。本设计主要研究内容如下:(1)通过多种伸缩臂控制机理的优缺点的比较,选出一种代表先进研究方向的伸缩臂控制机理,并对其进行详细分析研究与设计计算。(2) 设计伸缩臂动作的液压控制回路,对主要元件的主要参数进行设计计算,对系统一些主要静态指标进行计算。(3)设计出自动加油泵伸缩臂竹炭颗粒电气控制系统的控制流程图,并用西门子编程软件编制出伸缩臂动作的自动和手动控制程序,并进行仿真验证
关键词:伸缩臂;单缸插销;轮式起重机;液压;电气控制系统
轮式起重机是工程机械产品中重要组成部分,由于它的机动性好而被广泛应用于矿山、建筑、港口、油田等领域。轮式起重机主要有3种基本类型:汽车起重机、轮胎起重机、全路面起重机。随着世界经济和吊装技术的发展,轮式起重机在国际国内市场销量都在不断提高,可以说市场巨大。
第1章  多种伸缩臂控制机理
起重机伸缩控制技术取决于伸缩机构的结构形式,而伸缩机构的技术直接影响起重臂的自重、整机的性能,也是制约起重臂乃至起重机发展的关键技术。因而国外知名企业对伸缩机构的研究都很重视,都研制出了自己的专利技术。在轮式起重机各个部件中,吊臂是其中一个主要部件,其最大伸缩长度决定着起重机的最大工作幅度及最大起升高度。一般轮式起重机吊臂的伸缩节数为2-3节,每节臂长度一般为3m左右,这样其工作幅度大约在12m以下,但有时用户需要在更大的工作幅度或高度作业,为满足这种需求,吊臂必须采用多节伸缩。下面介绍几种典型的伸缩臂结构和动作顺序,并对他们之间的优缺点进行比较,并选择其中的一种进行具体分析设计。
氨基硅油乳液
1.1  多节伸缩臂结构和控制原理
图1.1 伸缩臂结构示意图
1.固定臂    2.一节伸缩臂    3.二节伸缩臂    4. 三节伸缩臂
5.四节伸缩臂      6.顶节臂    7.伸缩油缸
五节伸缩臂的结构如图1.1所示,伸缩油缸的组装示意图如图1.2所示。伸缩油缸放置在吊臂的内部,这使得吊臂外形简单,结构紧凑。一级缸的缸筒与二级缸的活塞杆铰接,二级缸的缸筒与三级缸的活塞杆铰接。伸缩缸上的A, B, C, D分别与固定臂、一节伸缩臂、二节伸缩臂、三节伸缩臂铰接,当一、二、三级伸缩缸按顺序伸出时,带动一、二、三节伸缩臂按顺序依次伸出。四节伸缩臂及顶节臂是靠钢丝绳带动与三节伸缩臂同步伸缩的。油缸缩回时顺序则相反,三节伸缩臂在油缸的带动下首先回缩,四节伸缩臂及顶节臂在钢丝绳的带动下同步缩回。然后,二节伸缩臂、一节伸缩臂在油缸带动下依次缩回。可见吊臂的伸缩基本上为顺序伸缩,即伸出时截面大的臂先伸,回缩时截面小的臂先回,这样有利于使伸出后吊机的起升载荷与起重特性相适应。
图1.2  油缸组装示意图带芯人孔
1.一级伸缩缸    2.二级伸缩缸    3.三级伸缩缸
1.1.2 油缸顺序伸缩的原理
图1.3 油缸顺序伸缩液压原理图
1.手动换向阀    2.平衡阀    3.固定套    4.中心套   
5,7,9,10单向阀    6.固定套    8.撞块
如图1.3所示,手动换向阀手把向前推,一级伸缩缸Al口进油,经过中心管、单向阀5进入一级伸缩缸的活塞腔,由于一级伸缩缸的活塞杆与固定臂相连是固定的,在压力油的作用下一级伸缩缸的缸筒外伸,活塞杆腔回油经过B1口回到多路换向阀,此时中心管跟随缸筒一起外伸,外伸到一定长度后,当中心管左端的固定套与活塞碰上时,中心管被迫停止,如缸筒继续伸,则中心管右端的固定套将单向阀7打开,并使缸筒也停止运动。此时高压油通过单向阀7、油管到达二级伸缩缸的A2口,并通过中心管进入到二级伸缩缸的缸底。这时一级缸已停止运动,由于二级伸缩缸的活塞杆与一级伸缩缸的缸筒相连接,因此二级伸缩缸的活塞杆是不动的。这样在压力油的作用下二级伸缩缸的缸筒外伸,回油经B2, Bl回到换向阀。与一级伸缩缸同样的原理,二级伸缩缸伸到一定程度,打开单向阀4,并停止运动。高压油继而进入三级伸缩缸的A3口到达缸底,三级伸缩缸外伸。这样一、二、三级伸缩缸依次外伸,就完成了顺序伸出。
手动换向阀手把向后拉,一级伸缩缸的B1口即活塞杆腔进油,由于B2, B3在结构上与BI是
相通的,因此二级缸和三级缸的活塞杆腔也同时有高压油。由于单向阀5,9是关闭的,一、二级缸的回油路不通。而单向阀10, 7是打开的,三级缸活塞腔的油路可经过A3、单向阀10 , A2口、单向阀7, A1口回到换向阀。因此三级缸首先回缩。当三级缸缩到规定的长度,缸筒上的撞块撞击二级缸上的撞块及推杆将单向阀9打开,二级缸活塞腔的回油路接通,二级缸开始回缩。同样当二级缸缩到规定的长度将单向阀S打开,一级缸回油接通,开始回缩。这样三、二、一级缸依次缩回,完成了顺序回缩。
图1.4第四节和顶节伸缩臂外伸示意图
四节伸缩臂及顶节臂是靠钢丝绳带动伸缩的。如图2.4所示,1和为钢丝绳端部,固定在第二节伸缩臂上,2和2'为导绳轮固定于第三节伸缩臂前端,导绳轮3固定于第四节伸缩臂上。当第三节伸缩臂在油缸带动下外伸时,第二节伸缩臂是固定不动的(即1和1'不动),这样固定在三节伸缩臂上的2 , 2'外伸,就带动3伸出,即第四节伸缩臂伸出。由图2.4还可计算出,如果2, 2,伸出L,则3伸出2L,即2相对于1伸L, 3相对于2伸L。这样第三节伸缩臂外伸时,第四节伸缩臂即以同样的速度伸出。同样的道理,4和4'固定在第三节伸缩臂上,5和5'为导绳轮固定于第四节伸缩臂上,6固定于顶节臂上。当第四节伸缩臂外伸时,第三
节伸缩臂相对是固定不动的,这样固定在四节伸缩臂上的4、 4外伸,带动6伸出,即顶节臂伸出。同样顶节臂与四节伸缩臂速度也是相同的。这样,三、四节伸缩臂及顶节臂达到同步伸出。 
图1.5伸缩臂缩回示意图
如图1.5所示:a, a'为钢丝绳端部,固定在第三节伸缩臂上;b ,b'为导绳轮,固定在三级伸缩缸上;a、c'为导绳轮,固定在二级伸缩缸上;d为导绳轮,固定在顶节臂上。三级伸缩臂在油缸带动下回缩时,由于C .  C'与二级伸缩臂相连,此时固定不动,三级伸缩缸与三级伸缩臂相连即a,  a'、b, b'一起回收,这样就带动d即顶节臂回收。由图2.5可计算出三节伸缩臂回缩L,顶节臂回缩3L。又由图1.4可知,6固定于顶节臂,4及4'固定于三节伸缩臂。当4及4'随三级伸缩臂缩L, 6缩3L时,就可带动5及5'缩2L.5和5'固定于四节伸缩臂上,即第四节伸缩臂缩2L。这样顶节臂回缩的同时就带动了四节伸缩臂同时回缩。上述过程是同时发生的,并且三节伸缩臂、四节伸缩臂及顶节臂是以相同的速度同时缩回。
此种伸缩臂采用5节伸缩,伸缩臂节数多,工作幅度大。而且油缸采用内置,结构紧凑,且吊臂按顺序伸缩。这种结构在设计工作幅度大的起重机吊臂时可以参考,并且其原理亦可
以用于其它类似的伸缩机构。
1.2  单缸插销式伸缩臂的插、拔销轴机构布置
图1.6缸销、臂销结构图
    在每节起重臂尾端的上方有一个能够把臂与臂锁定在一起并可以上下方向运动的销轴(由
于安装在起重臂上称为臂销),臂销的作用是实现臂与臂之间的锁定和解锁,臂销在弹簧力的作用下可以向上运动到另一节臂的臂孔中,这样臂与臂之间不能相互运动以达到刚性锁定的目地。当臂销受伸缩油缸上的臂销缸控制下的拔销机构作用时,臂销从另一节臂的臂孔中缩回,并向下移动,臂与臂之间处于解锁状态就可以相互运动,达到解锁的目的,臂销的上端有受力后锁定结构,防止臂与臂脱落。臂销上下运动到终点位置后的位置检测由图1.6所示的接近开关完成,当臂销上移到终点位置后上侧接近开关发出电信号,这时臂与臂处于锁定状态,臂销缸下移到终点位置时下侧接近开关发出电信号,这时臂与臂处于解锁状态。
在伸缩油缸缸头的两侧设有可以左右方向运动的销轴(由于安装在伸缩油缸上称为缸销),缸销的作用是实现油缸与吊臂之间的锁定和解锁,缸销初始位置在弹簧力的作用下可以左右方向运动并可以伸进吊臂后端两侧销孔中达到与臂刚性锁定的目标,这时油缸与吊臂锁定成为一体,缸销在缸销油缸的作用下缸销也可以从缸销孔中缩回,吊臂与伸缩油缸的刚性锁定解除。缸销伸缩的检测由伸缩油缸下方在左右缸销的两端安装的两个接近检测开关完成,左缸销外伸到终点时左侧伸接近开关发出电信号(见图1.6 ),右缸销外伸到终点时右侧伸接近开关发出电信号,当左、右两侧的接近开关都发出电信号时说明左右缸销都伸入
进了吊臂上的缸销孔,伸缩油缸与吊臂处于锁定状态。左缸销回收到终点位置后左侧缩接近开关发出电信号,右缸销回收到终点位置后右侧缩接近开关发出电信号,当左、右两侧接近开关同时发出信号后说明缸销缸缩回出吊臂上的缸销孔,油缸与吊臂处于解锁状态。
在二、三、四、五每一节吊臂后端的左或右侧都安装了接近开关检测板,在伸缩油缸缸头两侧的浮动尼龙块上共固定安装了四个接近开关,分别可以检测二、三、四、五四个臂尾位置的检测板。
缸销缸与臂销缸运动方向的控制和压力的提供,用排量20L齿轮泵提供的70bar的恒定压力油源作为控制臂销缸和缸销运动的动力,方向的控制由电磁换向阀控制,压力油由伸缩油缸的中央芯管来传送,中央芯管既作为进油管又作为回油管使用,当芯管进油时臂销缸或缸销缸能够动作,当从芯管中回油时臂销缸或缸销缸复位,为了避免液压系统和管路带来的滞后现象芯管保证了一定的预压力。
1.3  单缸插销式伸缩臂自动伸缩控制过程
在作业前,操作者根据吊重作业的工况和起重机的起重性能表,通过显示器来选择起重臂
的臂长组合。吊臂仰角为50°至70°左右,由于为了保证伸缩系统控制的可靠性和满足伸缩机构上的设计要求,各个缸销孔与缸销的间隙比较大,在吊臂仰角较小时由于磨擦力作用时,每一节臂的所在位置都不能确定是不是处于全缩位置,这样伸缩油缸上的长度传感器检测出的长度就不能准确代表伸缩臂上的臂销销轴所要动作的距离,容易造成误控制,导致控制上的失败。故进行自动伸缩时,起重臂应变幅到印角50°至70°左右。当选择自动控制伸缩系统来实现吊臂向外伸出时,当预设置确认后,控制器根据伸缩油缸上的长度传感器确认伸缩油缸缸头所在的位置,确定伸缩油缸是伸出或者缩回,油缸会根据设置依次伸出五、四、三、二节起重臂,回收时依次回收二、三、四、五节起重臂,从而完成预设的伸缩目标。
1.4  单缸插销式伸缩臂自动伸缩控制可靠性保证和故障预防
单个伸缩油缸控制的多节臂自动伸缩系统是典型的机、电、液一体化系统,技术较为复杂,利用接近开关来检测目标并发出电信号,由控制器编程来集中控制,状态的检测和传递对设计质量、制造质量、元件的可靠性提出了很高的要求,而起重臂出现故障后的维修性差,因而在安全和可靠性设计方面中作了以下几点面处理:

本文发布于:2024-09-22 23:24:26,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/195820.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:伸缩   油缸   起重机   控制   吊臂   机构
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议