《光纤通信学习心得》

光纤通信学习心得》
十轮自卸车如今进入大数据时代,光纤通信以传输速度快,通信容量大,中继距离长,保密性好等优势逐渐成为现如今的主要传输方式。作为一名大三学生,进行了为期一学期的光纤通信学习,在郝教授的悉心教导下,我对光纤通信学习心得作出如下总结。碳化硅石墨坩埚
早在中国古代就用“烽火台”报警,欧洲人用旗语传送信息。1880年,美国贝尔发明了用光波作载波传送话音的“光电话”。贝尔光电话是现代光通信的雏形。1960年,梅曼发明第1台红宝石激光器,给光通信带来了新希望。同期,美国麻省理工学院利用he-ne激光器和co2激光器进行了大气激光通信试验。1966年,英籍华人高锟和xx哈姆发表了关于传输介质新概念论文,指出用光纤进行信息传输可能性和技术途径,奠定了现代光通信——光纤通信基础。
光纤通信发展可以大致分为三个阶段。第一阶段(1966~1976),这是从基础研究到商业应用的开发时期。第二阶段(1976~xx),这是以提高传输速率和增加传输距离为研究目标和大力推广应用的大发展时期。第三阶段(xx~xx),这是以超大容量超长距离为目标、全面深入开展新技术研究的时期。
光纤通信有很多优点。比如容许频带很宽、传输容量很大、损耗很小、中继距离很长且误码率很小、重量轻、体积小、抗电磁干扰性能好、泄漏小、保密性能好、节约金属材料、有利于资源合理使用等。如果把通信线路比作马路,那么应该说是通信线路的频带越宽,容许传输的信息越多,通信容量就越大。载波频率越高,频带宽度越宽。光通信利用的传输媒质-光纤,可以在宽波长范围内获得很小的损耗。目前,光纤通信系统使用的光纤多为石英光纤,此类光纤在1.55μm波长区损耗可低到0.18db/km,比已知其他通信线路损耗都低得多,故由其组成的光纤通信系统中继距离也较其它介质构成系统长得多。光纤通信抗干扰原因一是光纤属绝缘体,不怕雷电和高压;二是传输频率极高光波,各种干扰源频率一般都较低,干扰不了高频光。另一种重要干扰源是原子辐射。
目前光纤通信在众多领域都有应用。如:通信网、构成因特网的计算机局域网和广域网、有线电视网的干线和分配网、综合业务光纤接入网。应用于电力系统的监视、控制和管理由于使用了光纤,不受强电磁干扰,不仅信息传输量增大,而且工作更加可靠。传输信息用的光纤,可以放在输电线、地线的中心,不受干扰,施工方便。用电设备观测雷击很困难,因为雷击对电设备也可能造成破坏。而用光纤却可以直接观测雷击现象,观测装置由检测器、光纤和观测记录仪等组成。雷击时位于铁塔上的检测器产生瞬间高电压,由于是
光纤传输,对观测记录仪不会造成影响。电监控系统信号为电信号,在含瓦斯高矿井中易引起爆炸。故如考虑安全因素,电信号功率不能太大,这又导致传输距离受限。若采用光纤系统,很多设备可无源化,即保证了安全,又能实现远距离监控。在军事领域战术通信主要有两种系统:一种是本地分配系统,包括战地指挥所的布线,兵器之间的连接,野战计算机的互连,以及基地信息传输系统等;一种是长距离战术通信系统。水下通信系统是扫雷舰与浮游载体间数据传输线路。扫雷舰主要任务是清扫航道,利用浮游载体扫雷最为安全而可靠。扫雷舰与浮游载体间连着3根光纤:一根光纤把水下浮游载体探测到的声纳信号和遥测信号传给舰船;另一根光纤用来传输舰船给水下浮游载体控制信息;第三根光纤备用。光纤反潜战网络,也就是把光纤传输线路与水听器相连,把监测到的敌潜声音信号通过光纤传输到舰上或岸上信息处理中心,以便确定作战方案。光纤用于水下通信,探测的灵敏度高,传输的信息量大,抗各种干扰的能力强,而且重量轻、浮力大。在医学领域利用传光束的照明器和测氧计、利用传像束的内窥镜、激光手术刀等。
光纤是由中心的纤芯和外围包层同轴组成圆柱形细丝。纤芯折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。包层为光传输提供反射面和光隔离,并起一定机械保护作用。光纤种类很多,本学期我们学习了作为信息传输波导用的油高纯度石英制成的光
纤。实用光纤主要有三种基本类型,第一:突变型多模光纤。第二:渐变型多模光纤。第三:单模光纤。相对于单模光纤而言,突变型和渐变型光纤芯直径都很大,可容纳数百个模式,故称为多模光纤。微拟球藻
反光雨衣在本学期中我们学习的光通信用的光器件可分为有源器件和无源器件两类。有源器件包括光源、光检测器和光放大器,这些器件是光发射机、光接收机和光中继器的关键器件,和光纤一起决定基本光纤传输系统水平。光无源器件主要有连接器、耦合器、波分复用器、调制器、光开关和隔离器等,这些器件对光纤通信系统构成、功能扩展和性能提高都是不可缺少的。光源是光发射机关键器件,其功能是把电信号转换为光信号。目前光纤通信广泛使用光源主要有半导体激光二极管或称激光器和发光二极管,有些场合也使用固体激光器。一个完整光纤通信系统,除光纤、光源和光检测器外,还需要许多其它光器件,特别是无源器件。这些器件对光纤通信系统构成、功能扩展或性能提高都是不可缺少的。虽然对各种器件的特性有不同的要求,但普遍要求插入损耗小、反射损耗大、工作温度范围宽、性能稳定、寿命长、体积小、价格便宜,许多器件还要求便于集成。
光纤大容量数字传输目前用同步时分复用(tdm)技术,复用又分为若干等级,因而先后
有两种传输体制:准同步(pdh)和同步数字系列(sdh)。pdh早在1976年就实现了标准化,目前还大量使用。随光纤通信技术和网络发展,pdh遇到了许多困难。sdh解决了pdh存在问题,是一种比较完善的传输体制,已得到大量应用。该体制不仅适用于光纤信道,也适用于微波和卫星干线传输。
祛斑净随着技术进步和社会对信息需求,数字系统传输容量不断提高,网络管理和控制要求日益重要,宽带综合业务数字网和计算机网络迅速发展,迫切需要建立在世界范围内统一的通信网络。在这种形势下,现有pdh许多缺点也逐渐暴露出来,主要有:北美、西欧和亚洲所用三种数字系列互不兼容,无世界统一标准光接口,使得国际电信网建立及网络营运、管理和维护十分复杂和困难。各种复用系列都有其相应的帧结构,使网络设计缺乏灵活性,不能适应电信网络不断扩大、技术不断更新的要求。由于低速率信号插入到高速率信号,或从高速率信号分出,都必须逐级进行,不能直接分插,因而复接/分接设备结构复杂,上下话路价格昂贵。与pdh相比,sdh有下列特点:sdh用世界上统一标准传输速率等级。sdh各网络单元光接口有严格标准规范。sdh帧结构中,丰富开销比特用于网络运行、维护和管理,便于实现性能监测、故障检测和定位、故障报告等管理功能。用数字同步复用技术,最小复用单位为字节,不必进行码速调整,简化了复接分接的实现设备,由低速
白酒瓶盖信号复接成高速信号,或从高速信号分出低速信号,不必逐级进行。用数字交叉连接设备dxc可对各种端口速率进行可控连接配置,对网络资源进行自动调度和管理,既提高了资源利用率,又增强了网络抗毁性和可靠性。sdh用dxc后,大大提高网络灵活性及对各种业务量变化适应能力,使现代通信网络提高到一个崭新的水平。

本文发布于:2024-09-22 15:42:31,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/159033.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:光纤   传输   系统   信号   器件   网络   信息   进行
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议