用于估计岩石的流体饱和度的方法与流程



1.本发明涉及一种估计岩石的流体饱和度的方法,并且具体地说,涉及一种根据岩石的3d图像估计岩石的流体饱和度的方法。


背景技术:



2.准确确定含烃储层内的流体饱和度对于确定是否选择要开发含烃储层以及开发和管理含烃储层来说是重要的因素。基于对孔隙尺度流体驱替动力学的理解,孔隙尺度流动模拟可以促进例如在储层模拟中用作输入的达西尺度流动参数的计算。然而,许多因素影响流体流动,包含例如流体密度和粘度、界面张力、流体流动速率、表面润湿性和孔隙几何形状。
3.然而,对这些因素的实验室测试需要大量时间并且成本相当高昂。此外,由于进行每个测试所需的时间和费用,可以处理的样品数量相对有限。需要更快地提供信息以便做出更及时的决定。许多业内人士正在转向模拟储层中的流体流动,以便及时做出明智的决策。
4.数字岩石物理学是一种技术,其已被开发来提供对含烃地层岩石的更快、更多和更便宜的分析以确定岩石的关键岩石物理特征。数字岩石物理学利用地层岩石的数字图像在孔隙尺度上模拟岩石多物理学并预测复杂岩石的特性。
5.因此,直接数值模拟可以直接在复杂孔隙空间上求解,例如从微米级x射线计算机断层扫描图像中提取的孔隙空间。阿尔帕克(alpak)等人(“通过直接数值模拟预测砂岩渗吸过程中的流体拓扑和相对渗透率(prediction of fluid topology and relative permeability in imbibition in sandstone rock by direct numerical simulation)”advances in water resources 122:49-59;2018和“在通用图形处理单元上使用相场格子玻尔兹曼方法在大型数字岩石图像上直接模拟孔隙尺度两相粘性毛细流动(direct simulation of pore-scale two-phase visco-capillary flow on large digital rock images using a phase-field lattice boltzmann method on general-purpose graphics processing units)”computational geosciences 23:849-880;2019)描述了一种基于能量的lbm(elbm),其为由三个模块组成的两相流动模拟系统:强制排水模拟模块、强制渗吸模拟模块和稳态相对渗透率计算模块。
6.莱昂卡雷拉(leon carrera)等人(us2018/0321127a1)公开了一种用于提供岩石样品的数值模型的方法,当用于流动模拟时,所述数值模型根据岩石样品中所获得的测量再现孔隙率和渗透率。从ct扫描恢复的数据提供了岩石样品的体积中衰减x射线辐射的统计密度函数。为3d模型的子体积填充孔隙率,其中孔隙率通过响应于作为高斯密度函数的近似值的孔隙率统计分布函数的高斯模拟算法而在空间上分布在子体积的细胞之间。如由响应于细胞的孔隙度的标量函数所定义,在细胞之间填充渗透率。通过执行3d模型的数值模拟来获得整体渗透率。重复这些步骤,直到在岩石的塞子样品上测量的整体渗透率和根据3d模型计算的整体渗透率之间的差值小于阈值。
7.弗雷德里希(fredrich)等人(us9,070,049b2和wo2014/142976a1)涉及用于改进来自岩石样品的材料特性的直接数值模拟的系统和方法。高分辨率图像用于解析其孔隙空间。fredrich等人认识到孔隙系统异质性可能并不总是在岩石的小成像部分内很好地表示,从而由于缺乏孔隙系统代表性而导致所计算的材料特性出现错误。因此,fredrich等人识别通过选择测试体积和相邻体积并计算相邻体积的岩石物理特性值的差所确定的表征单元体积(“rev”)。
8.数字岩石物理学建模常规上依赖于从微米级图像中准确地确定含烃岩石的孔隙体积的假设。然而,图像的分辨率有限,且因此岩石孔隙体积的相当大一部分可能仍然无法解析。
9.举例来说,如在saxena等人,2019(“根据孔隙尺度成像估计岩石的孔隙体积(estimating pore volume of rocks from pore-scale imaging)”transport in porous media 129:403-412;2019)中所论述,由于当前由微型ct检测器生成的微米级图像的分辨率的限制,在储层岩的微米级x射线计算机断层扫描图像中可能会缺失多达总孔隙体积的一半。直接数值模拟无法获得缺失的孔隙体积,这限制了数字岩石推断储层流体的真实残余饱和度的适用性。为了从直接模拟中导出有意义的结果,至少必须针对缺失的孔隙体积校正从微米级图像模拟中推断出的原始流体饱和度。
10.需要正确参数化流体流动的直接模拟,以包含亚分辨率孔隙体积的影响,从而校正来自流体流动的直接模拟的所推断流体饱和度。


技术实现要素:



11.根据本发明的一个方面,提供了一种用于根据岩石图像估计含烃岩石的流体饱和度的方法,其包括:获得来自油田中的含烃地层的岩石的3d图像,其中3d图像由多个体素构成,并且3d图像具有分辨率;通过选择3d图像的每一体素来处理3d图像以分割3d图像,以表示岩石中的孔隙空间或岩石中的实心物质;根据分割的3d图像估计岩石的图像孔隙体积,所述图像孔隙体积缺乏岩石的亚分辨率孔隙体积;确定适于考虑岩石的亚分辨率孔隙体积的校正的孔隙体积;使用对3d图像的直接流动模拟来估计岩石的图像导出的润湿流体饱和度;及根据岩石的图像导出的润湿流体饱和度、图像孔隙体积和校正的孔隙体积确定岩石的校正的润湿流体饱和度。
12.根据本发明的另一方面,提供一种用于估计含烃岩石的流体饱和度的支持反向传播的方法,其包括以下步骤:获得来自油田中的含烃地层的岩石的3d图像,3d图像具有分辨率;应用支持反向传播的经训练模型来分割3d图像;根据分割的3d图像估计岩石的图像孔隙体积,所述图像孔隙体积缺乏岩石的亚分辨率孔隙体积;确定适于考虑岩石的亚分辨率孔隙体积的校正的孔隙体积;使用对3d图像的直接流动模拟来估计岩石的图像导出的润湿流体饱和度;及根据岩石的图像导出的润湿流体饱和度、图像孔隙体积和校正的孔隙体积确定岩石的校正的润湿流体饱和度。
13.根据本发明的另一方面,提供一种用于根据岩石的图像估计岩石的流体饱和度的支持反向传播的方法,其包括以下步骤:获得来自油田中的含烃地层的岩石的图像,所述图像选自由一系列2d投影图像、3d重建图像及其组合组成的组;及应用支持反向传播的经训练模型以获得岩石的流体饱和度。
附图说明
14.通过参考以下优选实施例的详细描述和其中所提及的附图,将更好地理解本发明,其中:
15.图是油相和水相中的相对渗透率与流体饱和度的图形表示,其说明了测试岩石体积的渗吸。
具体实施方式
16.根据本发明的方法,可以比进行实验室测量更快地根据3d图像中的流体流动的直接模拟而估计岩石的流体饱和度。此外,通过考虑分割的3d图像中缺失的孔隙体积,流体流动的方向模拟更加准确。
17.具体地说,本发明的方法基于岩石的图像孔隙体积、校正的孔隙体积以及从3d岩石图像的直接模拟导出的岩石的润湿流体饱和度而估计流体饱和度。更具体地说,通过校正从微米级图像中确定的图像导出的润湿流体饱和度来确定流体饱和度的有意义的估计。在优选实施例中,针对较低分辨率图像中缺失的亚分辨率孔隙体积校正图像导出的润湿流体饱和度。
18.本发明人出乎意料地发现,岩石中的毛细管物理学可用于量化图像分辨率对孔隙体积的影响。这一发现使得数字岩石或数字岩石物理学能够提供从由微型ct技术生成的岩石的3d图像中确定润湿流体饱和度的能力。有利地,校正的润湿流体饱和度以及因此流体饱和度补偿了有限的图像分辨率,而不需要仅可能以图像视场或物理实验室测量为代价的较高分辨率成像。
19.本发明提供了一种基于岩石的原始3d孔隙尺度图像来更准确地估计岩石的流体饱和度的方法,所述原始3d孔隙尺度图像相对于岩石的实际孔隙结构具有有限的分辨率。与数字岩石物理学建模中的当前假设相反,本发明人认识到,含烃岩石的孔隙体积的很大一部分容纳在尺寸低于由通常用于提供这类岩石的图像的3d孔隙尺度成像技术所提供的图像分辨率的孔隙中。因此,常规数字岩石物理学建模由于未能考虑小于孔隙尺度成像技术的图像分辨率的孔隙而基本上使岩石的有效润湿流体饱和度以及因此流体饱和度预测偏低。
20.本发明还提供了一种用于根据岩石的3d图像估计岩石的流体饱和度的支持反向传播的方法。将支持反向传播的经训练模型应用于3d图像以分割岩石的3d图像。
21.在优选实施例中,通过以下操作产生经训练模型:提供岩石的图像训练集,将图像分割成多个带标记的体素,所述多个带标记的体素表示岩石中的孔隙空间和实心物质,和经由反向传播,使用带标记的体素训练模型。
22.岩石的图像训练集可以包含例如从孔隙尺度成像技术获得的2d投影图像、从2d投影图像重建的3d图像、合成2d图像、合成3d图像及其组合。在优选实施例中,图像的训练集是从基于云的工具获得的,所述基于云的工具适于存储来自孔隙空间成像技术,尤其是来自微型ct和薄片的2d投影图像。所述工具适于处理2d投影图像以产生重建的3d图像。所述工具还适于存储得到的3d图像。
23.支持反向传播的过程的实例包含,不限于,人工智能、机器学习和深度学习。本领域技术人员将理解,支持反向传播的过程的进展迅速继续。即使在不同的名称下,本发明的
方法也有望适用于那些进展。因此,即使本文未明确举出,本发明的方法也适用于支持反向传播的过程的另外的进展。
24.支持反向传播的过程的优选实施例是深度学习过程,包含但不限于卷积神经网络。
25.支持反向传播的过程可以是受监督的、半受监督的、不受监督的或其组合。在一个实施例中,通过添加不受监督技术来使受监督的方法成为半受监督的。
26.在受监督的支持反向传播的过程中,对图像的训练集进行标记,以提供感兴趣的孔隙空间和实心物质的实例。在不受监督的支持反向传播的过程中,可以通过例如在图像中的感兴趣图像周围拉延多边形来识别感兴趣的孔隙空间和/或实心物质。然后,经训练的过程将识别具有相似潜在空间特征的感兴趣区域。当训练集被标记为图像时,标签的尺寸可以为1d-3d。
27.在一个实施例中,受监督的支持反向传播的过程是分类过程。分类过程可以以体素方式、切片方式和/或体积方式进行。
28.在另一个实施例中,不受监督的支持反向传播的过程是聚类过程。聚类过程可以以体素方式、切片方式和/或体积方式进行。
29.在另一个实施例中,不受监督的支持反向传播的过程是生成性过程。生成性过程可以以体素方式、切片方式和/或体积方式进行。
30.优选地,支持反向传播的过程是分割过程。
31.在优选实施例中,训练步骤包含验证和测试。
32.在本发明的方法中,可以根据岩石的图像估计岩石的岩石物理特征,具体地说岩石的流体饱和度。从来自含烃地层的岩石获得岩石图像,对其地层或其部分的岩石物理特征感兴趣。优选地,岩石可以是来自含烃地层的砂岩、碳酸盐岩、页岩及其组合。可以通过用于从烃地层获得岩石样品的常规手段来获得岩石。在优选实施例中,通过从地层中的井内对地层的一部分取芯来获得岩石的岩心样品。替代地,可以从在地层中的进行钻井中产生的钻屑获得岩石样品。可以从与电阻率测井图相同的井眼中获得岩石。替代地,可以从与产生电阻率测井图的井眼相同的油田中的另一个井眼中获得岩石。
33.岩石样品应具有足够的尺寸,以便在生成图像的尺度下获得具有足够体积的3d图像。具体地说,岩石样品应具有足够的尺寸,使得在要生成的图像的尺度或视场上,样品的大块的特征比样品的边缘的特征占优势。
34.从岩石样品获得有由多个体素构成的3d图像。可以利用孔隙尺度成像技术获得岩石的3d图像。可以通过包含但不限于x射线微型计算机断层扫描(微型ct)和x射线纳米计算机断层扫描(纳米ct)的x射线计算机断层扫描、声学显微法或磁共振成像获得岩石的3d图像。最优选地,通过微型ct获得岩石的3d图像,以提供足够的岩石视场,从而避免边缘孔隙扭曲所得图像的整体孔隙体积,以及减少较高分辨率断层扫描(例如,纳米ct)所需的扫描时间和计算要求。
35.在优选实施例中,3d图像是从基于云的工具获得的,所述基于云的工具适于存储来自孔隙空间成像技术,尤其是来自微型ct和薄片的2d投影图像。所述工具适于处理2d投影图像以产生重建的3d图像。所述工具还适于存储得到的3d图像。
36.通过孔隙尺度成像技术获得的岩石的3d图像具有分辨率。3d图像的体素限定了图
graph.)》30:9-15;2006)。本领域技术人员将理解所需的分割选择。优选地,使用数据处理系统自动地进行使用分割算法的分割。
41.在已经将图像分割之后,根据岩石的分割的3d图像估计图像导出的孔隙体积,φi。岩石的图像孔隙体积可以通过以下估计:对分割的图像中表示孔隙空间的体素的数量进行求和,对分割的图像中体素的总数进行求和(或从成像参数获得体素的总数),然后将分割的图像中表示孔隙空间的体素的数量之和除以分割的图像中体素的总数。可以通过将分配有代表孔隙空间的二进制值(例如1或0)的体素的数量相加来确定分割的图像中代表孔隙空间的体素的数量之和。可以通过将分配了二进制值的体素(孔隙空间体素和实心物质体素)的总数相加来确定分割的图像中体素的总数之和。图像孔隙体积缺乏岩石的亚分辨率孔隙体积。
42.根据本发明,确定了适于考虑岩石的亚分辨率孔隙体积的校正的孔隙体积。在本发明的一个实施例中,使用常规的实验室测量来测量校正的孔隙体积。在本发明的另一实施例中,校正的孔隙体积通过将校正因子应用于图像孔隙体积,例如通过使用图像导出的孔隙体积(φi)和图像导出的校正因子(αr)估计实际孔隙体积(φ

)而确定:
43.φ

=φ1/αrꢀꢀꢀꢀꢀꢀꢀꢀ
(1)
44.校正因子可以通过变换来估计。在优选实施例中,通过在高达图像极限压力的压力下,针对在分割的图像中可辨识的孔隙,从岩石的分割的3d图像中确定非润湿液体毛细管压力曲线,来确定校正因子。优选地,选择汞或伍德金属作为非润湿液体。非润湿性液体毛细管压力曲线可以通过基于填充图像的孔隙空间的非润湿性液体的模拟来绘制非润湿性液体在选定的压力直至图像极限压力下所占据的岩石的孔隙率而从分割的图像中确定。
45.校正因子(αr)的表达式取决于压汞毛细管压力(micp)模型的选择。对于毛细管压力曲线的thomeer模型,αr通过下式给出:
[0046][0047]
其中g是捕获micp曲线的形状的孔隙几何因子,且n是孔喉分辨率参数。
[0048]
根据从图像导出的非润湿液体毛细管压力曲线和根据体素的大小确定的图像分辨率来确定孔隙分辨率参数n。孔隙分辨率参数dd是非润湿液体在入口压力(pd)下进入的孔喉大小(dd)与体素大小(δx)的比率,n=(dd/δx)。可以根据3d成像的参数(即图像的分辨率)确定体素的尺寸。非润湿液体在入口压力(pd)下进入的孔隙的孔喉尺寸(dd)可以根据非润湿液体毛细管压力曲线确定,所述非润湿液体毛细管压力曲线是根据以下等式从岩石的分割的3d图像导出的:
[0049]
dd=4σcosθ/pd
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(3)
[0050]
根据从图像导出的非润湿液体毛细管压力曲线确定孔隙几何因子g。可以通过将最佳拟合曲线绘制到从分割的图像模拟的非润湿液体毛细管压力曲线上,并根据曲线的形状确定孔隙几何因子,确定孔隙几何因子g。最佳拟合曲线可以通过最小二乘法或通过任何常规的曲线拟合方法来绘制。
[0051]
随孔隙体积复杂性增加的参数g,对于管道精确为0,对于砂岩约为0.1至0.3,对于碳酸盐岩约为0.3至0.5。也可以通过分析数字模拟压汞的响应,直接从分辨率有限的3d图像估计参数n、g和αr,而无需实验室测量。
[0052]
为了从直接模拟中导出有意义的结果,且根据本发明,针对缺失的孔隙体积校正从微米级图像模拟中推断出的原始流体饱和度。
[0053]
以下表达式将汞占据的岩石孔隙体积部分与可用于解析在给定毛细管压力p下在micp模拟期间最后穿透的孔喉的体素数量(ξ)相关联:
[0054]
φ(ξ)=α(ξ)φ

ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(4)
[0055]
其中
[0056][0057]
在等式(5)中,δx是图像体素大小,d(p)是micp模拟中在给定压力p下穿透的孔喉大小,σ是汞-空气表面张力,且θ是接触角。如果所有孔喉都被侵入,那么ξ=1,且因此汞进入的孔隙体积将等于图像的孔隙体积,即φ(1)=φi和α(1)=αr。α(ξ)的表达式取决于最能描述模拟曲线行为的micp模型的类型。对于thomeer的micp,函数形式α(ξ)通过下式给出:
[0058][0059]
brooks-corey拟合的对应表达式如下表示:
[0060][0061]
其中λ是类似于参数g的拟合参数。
[0062]
使用等式(4),micp模拟中的空气饱和度涉及ξ值:
[0063][0064]
其中s
wi
和s
nwi
分别是润湿相(空气;用下标e表示)和非润湿相(汞;用下标fe表示)的图像导出的饱和度。符号v
nwi
表示图像中汞占据的体积分数。流体饱和度相对于真实岩石孔隙体积(φ

)的对应表达式通过下式给出:
[0065][0066]
等式(8)和(9)假设根据直接模拟估计的汞体积对于与足够大的值ξ对应的孔隙和孔喉而言是准确的。使用这些等式,将图像导出的润湿流体饱和度变换为校正的真实润湿流体饱和度:
[0067]sw∞
(ξ)=1-(1-s
wi
(ξ))α(1)(排水)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(10)
[0068]
等式(8)到(10)假设所有未解析的孔隙率都填充有润湿相(对应于亲水或亲油条件)。对于排水过程,我们可假设岩石基本上为亲水的,因此先前假设是有效的且等式(10)可应用于排水过程。然而,对于渗吸过程,由于存在烃,因此可以在岩石中形成混合润湿性。在此条件下,无法假设未解析的孔隙率仅填充有一种类型的流体。尚不清楚流体存在于未解析的孔隙中的百分比。作为初始估计,可使用α(1)和1之间的平均值:
[0069]sw∞
(ξ)=1-(1-s
wi
(ξ))α
imb
(渗吸)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(11)
[0070]
其中α
imb
是α(1)和1之间的平均值。
[0071]
等式(10)和(11)表示发明人认识到图像导出的特性,尤其是对于较低分辨率图像,与实验室中测量的那些特性不匹配。本发明人认识到,在不校正缺失的亚分辨率孔隙体积的情况下,由于φi《φ

,因此对从使用分割的微型ct图像的直接流动模拟导出的流体流动预测偏低。
[0072]
如果砂岩储集岩(例如,g=0.2)的分辨率适中(例如,n=5)并且图像推断的空气饱和度较低(例如,s
wi
=0.4),那么α(1)=0.75,且因此校正的空气饱和度将为s
w∞
=0.55。这说明对图像导出的流体饱和度的校正在将任何模拟结果与实验室测量进行比较之前是至关重要的。换句话说,饱和度s
w∞
与实验室测量的饱和度相当,而原始图像饱和度s
wi
不与所述实验室测量的饱和度相当。
[0073]
参数(n、g和λ)可以直接从saxena等人(“根据孔隙尺度成像估计岩石的孔隙体积(estimating pore volume of rocks from pore-scale imaging)”transport in porous media 129:403-412;2019)中所描述的分割的图像导出。将原始micp模拟结果(由岩石的3d图像中的经解析孔隙度归一化的图像导出的流体体积)与实验室测量的那些模拟结果进行比较可能会导致错误否定比较。
[0074]
从成像角度来看,对应于较大值ξ的孔喉的分辨率较好,且因此也可以较高置信度进行分割。对于任何直接模拟,与针对较低值ξ所估计的那些值相比,对应于较大值ξ的流体饱和度将具有较高保真度。如果ξ=2,那么仅2个体素(呈1维形式)可供非润湿流体穿透。因此,此类分辨率低的孔隙内的相关联流体体积仍不确定,且因此无法通过直接模拟准确地捕获这些狭窄孔喉内的相关联流体分布。为了确保ξ≥2,需要满足以下不等式:
[0075][0076]
以及
[0077]sw∞
≥1-α(2)或s
nw∞
≤α(2)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(13)
[0078]
等式(12)和(13)中的不等式直接遵循等式(8)和(9)中的结果。在将图像模拟导出的润湿/非润湿流体(例如空气/汞)饱和度与实验室测量的饱和度进行比较之前,需要考虑的又一方面是非润湿流体开始进入数字岩石的压力值。在数值模拟中,非润湿流体首先经由“外部”孔体而不是孔喉进入数字岩石样品,因为与孔喉相比,所述孔体可以在低得多的压力下进入—补偿外部孔体对流动特性引入的压力和体积偏差在此称为闭合校正。尽管在物理micp测量中也会发生这种现象,但与注入到物理样品中的非润湿流体的总体积相比,外部孔体的体积贡献可以忽略不计,这仅仅是因为样品大小显著较大。因此,在初次排水模拟中,压力和流量数据只有在外部孔体填充有非润湿流体(例如汞)后才有意义。如果满足下式,那么可保证此条件:
[0079][0080]
以及
[0081][0082]
等式(12)和(13)中的饱和度截止值与图像体素大小相关,即体素大小越精细,参数n越大,且因此对截止值的限制较少。同时,等式(14)和(15)中的饱和度截止值与视场相关,其中视场越大,值v
closure
越小,且因此对截止值的限制较少。
[0083]
在另一实施例中,等式(12)和(13)中与图像分辨率相关的饱和度截止值可以通过以更精细的体素大小对岩石样品进行重新成像来放宽。然而,这将进一步限制与视场相关的饱和度截止值,因为当今技术水平的微型ct检测器仅可捕获有限数目的体素(通常少于5000x5000x5000个体素),且只能以视场为代价以更精细的体素大小(因此增加参数n的值)
进行成像(从而产生较大值v
closure
)。
[0084]
多相流是一种粘性力与毛细管力在微米尺度上相互作用的复杂现象。孔隙空间的解析程度进一步使这两种力之间的此相互作用的数值模拟复杂化,且因此可能对模拟结果的解释造成负面影响。在将直接数值模拟的结果与实验室测量的数据进行比较之前,必须考虑因缺失的孔隙体积而造成的任何限制。根据本发明的方法,针对亚分辨率孔隙体积校正使用直接流动模拟推断出的流体饱和度以恢复真实饱和度。
[0085]
在本发明的一实施例中,本发明的方法用于对使用分割的微型ct图像从多相流的直接数值模拟推断出的盐水饱和度进行校正。
[0086]
举例来说,模拟可限于将非润湿油相初次排入完全亲水的岩石中。应注意,等式(10)到(14)中的结果与表面张力和润湿角无关,且因此适用于其它流体系统(例如水-油)的初次排出。然而,校正假设非润湿流体(油)无法进入任何亚分辨率孔隙,且因此如果仅在以无限分辨率成像的同一视场上进行模拟,使得数值模拟器可以进入所有孔隙,且如果非润湿相以其它方式侵入亚分辨率孔隙体积,那么所述校正不适用。
[0087]
获得具有图像和体素大小的3d微型ct图像。通过选择3d图像的每一体素,处理所述3d图像以分割所述图像,以表示岩石中的孔隙空间或岩石中的实心物质。
[0088]
通过对表示分割的图像中的孔隙空间的体素数量进行求和并除以根据成像参数确定的图像中的体素总数,根据岩石的分割的三维图像确定图像孔隙率。
[0089]
然后根据岩石的分割的3d图像确定汞毛细管注入曲线。根据等式(3),通过相对于压力绘制每一分割的岩石图像所占据的体积分数来创建基于图像的曲线。
[0090]
根据汞毛细管注入曲线和体素大小确定孔喉分辨率参数n。汞在入口压力(dd)下进入的孔喉大小由汞毛细管注入曲线和等式(3)确定,且计算孔喉分辨率参数n=dd/δx。
[0091]
通过使用最小平方曲线拟合进行曲线拟合,根据汞毛细管注入曲线确定孔隙几何因子g和/或brooks-corey拟合参数λ,其中将较高权重给到图像中分辨率较好的孔隙。利用g和/或λ,计算岩石样品(φ

)的孔隙体积校正因子(αr)和校正的孔隙体积,从而例如根据图像孔隙体积提供对真实孔隙体积进行低估的指示。
[0092]
专有的直接孔隙尺度elbm流动模拟器用于在数值上计算相对渗透率。直流模拟器考虑了排水渗吸滞后。此方法表示用于相对渗透率计算的稳态型位移法。首先模拟强制排水过程。在强制排水过程中,使孔隙空间完全饱和的原位润湿相被注入的非润湿相取代。岩石模型被润湿相完全浸透。假设亲水行为(恒定接触角为40度),模拟排水过程。将浸满油的缓冲层放置到入口,且将浸满水的缓冲层放置到出口。油以恒定的规定速度从入口缓冲层注入到孔隙空间中,直到孔隙空间中的平均含水饱和度没有表现出明显变化(收敛),此时排水计算终止。
[0093]
应注意,以此方式获得的含水饱和度可能不一定对应于表征单元体积的束缚水饱和度或共存水饱和度,因为在相当小的计算域大小(远小于岩心)中获得的粘性压降明显小于多孔板或离心法中建立的与储油层中的饱和高度对应的毛细管压力。
[0094]
不同平均含水饱和度值下的流体配置的快照用于排水相对渗透率计算。然后将排水后流体配置用作强制渗吸模拟的初始状态,其中非润湿相被润湿相取代。在强制渗吸计算之前,将入口和出口缓冲器中的流体互换。再次继续进行强制渗吸计算,直到多孔域中的平均含水饱和度收敛。
[0095]
然后将在强制渗吸模拟期间获取的不同平均含水饱和度值下的流体配置快照用于相对渗透率计算。为了确保相对渗透率计算中的稳态条件,对于给定的饱和度快照,使用施加于域的所有面上的循环型周期性边界条件执行计算。多孔域在主流方向上的完全镜像被应用,使得在域的出口面上完全满足周期性边界条件。然后将系统驱动到稳态,这与稳态相对渗透率实验非常相似。
[0096]
在系统收敛到稳态后,由elbm计算的有效润湿和非润湿相渗透率通过在相对渗透率模拟之前使用准确且高效的mrt-lbm代码计算的绝对渗透率进行归一化(alpak等人“通过直接数值模拟预测砂岩渗吸过程中的流体拓扑和相对渗透率(prediction of fluid topology and relative permeability in imbibition in sandstone rock by direct numerical simulation)”advances in water resources 122:49-59;2018)。用于计算有效润湿和非润湿相渗透率的通量是通过分别监测与多孔岩石相对应的域的一部分上润湿相和非润湿相的平均速度导出的。换句话说,缓冲器被排除在通量计算之外。相对较长的缓冲器用于强制排水,且尤其是渗吸过程模拟,其目的是将所得流体配置用于后续的相对渗透率计算,以最小化边界效应。此外,可以从有效特性计算中排除与缓冲器相邻的内部(岩石)域的额外环,以进一步最小化边界效应。此方法通常用于强制渗吸模拟。
[0097]
然后对涵盖在强制排水或强制渗吸过程中观察到的饱和度范围的所有饱和度快照重复所述过程。相对渗透率计算过程是准确、物理上稳健且计算上要求很高的。计算需求直接与准确捕获相对渗透率函数所需的饱和度分辨率(即饱和度快照的数量)成比例。
[0098]
对于预定的体素大小,由等式(12)到(15)计算压力和体积截止值,从而提供非润湿相v
closure
和非润湿相v
nw

[0099]
实例
[0100]
提供本文所要求保护的本发明的方法的实施例的以下非限制性实例仅用于说明性目的。所述实例说明饱和度变换的应用。在图中,绘制了针对盐水(湿润相)和烃(非湿润相)的流体饱和度的相对渗透率。测试岩石体积的渗吸直接模拟的原始结果分别针对油曲线和水曲线以虚线12和14展示。然后,通过使用等式(11)对饱和度进行校正,将原始模拟数据变换为从饱和度截止值之间的模拟结果推断出的流体饱和度。在饱和度校正之后,变换后的模拟结果(分别针对油和水为线16、18)与来自同一油井的塞子的实验室测量的稳态相对渗透率(分别针对油和水为线22、24)一致。
[0101]
本发明的方法提供对流体饱和度的更准确估计以及由此导出的连续饱和度特征曲线,特别适合于勘探和生产决策以及油田评估。本发明的方法使得能够快速做出决策。例如,使用岩石样品的物理测量来估计烃饱和度的过程可能需要大约7到8个月,而本发明的方法可以在大约几天内提供基本上相同或更好的准确度。
[0102]
本发明非常适合于获得所提及的目的和优点以及其中固有的目的和优点。上面公开的特定实施例仅是说明性的,因为对受益于本文教导的本领域技术人员显而易见的是可以以不同但等效的方式修改和实践本发明。此外,除了在所附权利要求书中所描述的以外,没有意图限制本文所示的构造或设计的细节。因此,显而易见的是,以上公开的特定说明性实施例可以被改变、组合或修改,并且所有这样的变化都被认为在本发明的范围内。本文说明性地公开的发明可以在不存在本文未具体公开的任何要素和/或本文公开的任何可选要素的情况下适当地实践。尽管根据“包括”、“含有”或“包含”各种组分或步骤来描述组合物
和方法,但是所述组合物和方法还可以“基本上由各种组分和步骤组成”或“由其组成”。上面公开的所有数字和范围可以以一定量变化。每当公开了具有下限和上限的数值范围时,具体公开了落入所述范围内的任何数字和任何包含的范围。特别地,本文公开的值的每个范围(形式为“约a到约b”,或等效地“大约a到b”,或等效地“大约a-b”)应被理解为列出了在更宽泛的值范围内涵盖的每个数字和范围。另外,权利要求中的术语具有其普通的普遍含义,除非专利权人另外明确和清楚地定义。此外,在权利要求中使用的不定冠词“一”或“一个”在本文中被定义为表示一个或多个其指代的要素。如果本说明书中的词语或术语的使用与可以通过引用并入本文的一个或多个专利或其他文件存在任何冲突,则应采用与本说明书一致的定义。

技术特征:


1.一种用于根据岩石图像估计含烃岩石的流体饱和度的方法,其包括:-获得来自所述油田中的所述含烃地层的岩石的3d图像,其中所述3d图像由多个体素构成,并且所述3d图像具有分辨率;-通过选择所述3d图像的每个体素,处理所述3d图像以分割所述3d图像,以表示所述岩石中的孔隙空间或所述岩石中的实心物质;-根据分割的3d图像估计所述岩石的图像孔隙体积,所述图像孔隙体积缺乏所述岩石的亚分辨率孔隙体积;-确定适于考虑所述岩石的所述亚分辨率孔隙体积的校正的孔隙体积;-使用对所述3d图像的直接流动模拟来估计所述岩石的图像导出的润湿流体饱和度;以及-根据所述岩石的所述图像导出的润湿流体饱和度、所述图像孔隙体积和所述校正的孔隙体积确定所述岩石的校正的润湿流体饱和度。2.根据权利要求1所述的方法,其中所述岩石的所述3d图像是通过x射线计算机断层扫描获得的。3.根据权利要求1所述的方法,其中所述岩石是从由砂岩、碳酸盐岩、页岩及其组合构成的含烃地层中获得的。4.根据权利要求1所述的方法,其中所述岩石的所述校正的孔隙体积是通过实验室测量确定的。5.根据权利要求1所述的方法,其中所述岩石的所述校正的孔隙体积是通过以下操作确定的:从所述岩石的所述分割的3d图像导出非润湿液体毛细管压力曲线;及根据所述分割的3d图像和所述非润湿液体毛细管压力曲线确定所述校正的孔隙体积。6.根据权利要求5所述的方法,其中所述非润湿液体毛细管压力曲线是从在高达图像极限压力的压力下的所述岩石的所述分割的3d图像导出的,其中所述图像极限压力是能够施加在所述非润湿液体上以克服从所述岩石的所述分割的3d图像中可辨识的最窄孔喉的毛细管压力的最小压力。7.根据权利要求1所述的方法,其中所述3d图像是从基于云的工具获得的,所述基于云的工具适于存储和处理来自孔隙尺度成像技术的2d投影图像。8.一种用于估计含烃岩石的流体饱和度的支持反向传播的方法,其包括以下步骤:-获得来自所述油田中的所述含烃地层的岩石的3d图像,所述3d图像具有分辨率;-应用支持反向传播的经训练模型以分割所述3d图像;-根据分割的3d图像估计所述岩石的图像孔隙体积,所述图像孔隙体积缺乏所述岩石的亚分辨率孔隙体积;-确定适于考虑所述岩石的所述亚分辨率孔隙体积的校正的孔隙体积;-使用对所述3d图像的直接流动模拟来估计所述岩石的图像导出的润湿流体饱和度;以及-根据所述岩石的所述图像导出的润湿流体饱和度、所述图像孔隙体积和所述校正的孔隙体积确定所述岩石的校正的润湿流体饱和度。9.根据权利要求8所述的方法,其中所述经训练模型通过以下操作产生:-提供岩石的图像训练集;

将所述岩石图像分割成多个带标记的体素,所述多个带标记的体素表示所述岩石中的孔隙空间和实心物质;和-经由反向传播,使用所述带标记的体素训练模型。10.根据权利要求8所述的方法,其中所述岩石的所述校正的孔隙体积是通过实验室测量确定的。11.根据权利要求8所述的方法,其中所述岩石的所述校正的孔隙体积是通过以下操作确定的:从所述岩石的所述分割的3d图像导出非润湿液体毛细管压力曲线;及根据所述分割的3d图像和所述非润湿液体毛细管压力曲线确定所述校正的孔隙体积。12.根据权利要求8所述的方法,其中所述3d图像是从基于云的工具获得的,所述基于云的工具适于存储和处理来自孔隙尺度成像技术的2d投影图像。13.根据权利要求10所述的方法,其中所述图像训练集是从基于云的工具获得的,所述基于云的工具适于存储和处理来自孔隙尺度成像技术的2d投影图像。14.一种用于根据岩石的图像估计岩石的流体饱和度的支持反向传播的方法,其包括以下步骤:-获得来自所述油田中的所述含烃地层的岩石的图像,所述图像选自由一系列2d投影图像、3d重建图像及其组合组成的组;以及-应用支持反向传播的经训练模型以获得所述岩石的流体饱和度。15.根据权利要求14所述的方法,其中所述经训练模型通过以下操作产生:-提供岩石的图像训练集;-将所述岩石图像分割成多个带标记的体素,所述多个带标记的体素表示所述岩石中的孔隙空间和实心物质;和-经由反向传播,使用所述带标记的体素训练模型。16.根据权利要求14所述的方法,其中所述图像是从基于云的工具获得的,所述基于云的工具适于存储和处理来自孔隙尺度成像技术的2d投影图像。17.根据权利要求15所述的方法,其中所述图像训练集是从基于云的工具获得的,所述基于云的工具适于存储2d投影图像和3d重建图像。

技术总结


本发明提供一种用于根据岩石图像估计含烃岩石的流体饱和度的方法。分割所述图像以表示所述岩石中的孔隙空间或实心物质。根据分割的图像估计图像孔隙体积,并确定校正的孔隙体积以考虑所述岩石的所述图像中缺失的亚分辨率孔隙体积。使用对所述岩石图像的直接流动模拟来估计所述岩石的图像导出的润湿流体饱和度,并针对所述校正的孔隙体积进行校正。一种支持反向传播的经训练模型可用于分割所述图像。一种支持反向传播的方法可用于使用选自一系列2D投影图像、3D重建图像及其组合的图像来估计所述流体饱和度。估计所述流体饱和度。估计所述流体饱和度。


技术研发人员:

N

受保护的技术使用者:

国际壳牌研究有限公司

技术研发日:

2021.04.21

技术公布日:

2022/11/25

本文发布于:2024-09-23 09:32:13,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/15691.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:孔隙   图像   岩石   所述
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议