详谈耳机发展史

耳机的发展史
1937年,德国Beyerdynamic公司设计生产了世界上第一只也是第一只动圈式耳机DT48,今天耳机在社会生活的各个领域得到了广泛的应用,出现了各种类型、各种用途的耳机。动圈式耳机是当今耳机世界的主流,它比较容易实现大规模的工业化生产,有易于驱动、坚固耐用、音质好、价格低廉的优点。
我们使用的动圈式耳机通常分为耳塞和耳机,后者又被称为大耳机、头戴式耳机,它们的原理、结构都是相同的,佩带方式和体积不同。耳塞的振膜面积小、承受功率有限,难以达到具有大型振膜的头戴式耳机的声音素质,而且耳塞直接插入耳道,空间感不良,所以在高保真和专业领域头戴式耳机占据着主导位置,耳塞则以其轻巧便携
成为便携音频设备的标准配置。高档的极品耳塞,声音是可以媲美高档耳机的,最有名望的是ETYMOTIC ER4系列,但它的价格昂贵,高达300美元。
怎样的耳机是好的耳机呢?一支佩带舒适、耐用、声音素质达到使用要求的耳机就是好耳机。下面我们谈谈耳机的结构和耳机音质的评价。
耳机的结构。
一只耳机主要由四个部分组成:头带、左右发声单元、耳罩和引线。
头带的功能是固定左右发声单元,将其置于头的两侧,它的结构和它与单元的连接方式决定了头带和耳罩对头部的压力,影响着耳机佩带的舒适性。
耳罩是头部与发声单元接触的部件,它对于动圈式耳机是至关重要的,其功能是将低频反射回来,保证低频的重放。耳罩一般有两种样式,一种压在耳朵上,叫压耳式耳罩(Supra-aural),另一种耳罩呈杯状,环绕着耳朵,叫绕耳式耳罩(Circumnaural)。耳罩要尽量的柔软舒适,其内部一般填充海绵,外面蒙上皮革或绒布。耳罩使用的材料对中频和高频有吸收作用,它使耳朵与振膜形成一段距离,并在耳机和头部间形成一个腔室。大型的绕耳式耳罩内部空间大,声音可以作用于耳廓,形成较好的空间感。一只设计良好的耳机已经充分考虑了耳罩的作用,所以中高档耳机的耳罩是不可以损坏或随意更换的。表面微弧氧化处理
耳机的引线是耳机放大电路输出端与耳机音圈的连接线,优质耳机线常采用多支线芯的无氧铜(OFC)线,经过严格的绝缘和屏蔽处理,杜绝铜内杂质对信号传输的影响和外界杂波的干扰。耳机线的末端是插头,有两种规格:
6.35mm和3.5mm,即平时所说的大小插头,6.35mm插头用于专业音频和民用音频设备,3.5mm插头用于便携设备。一般高保真耳机会提供插头转换器,保证耳机在各种设备上的使用。中高档耳机的插头是镀金的,这不是为了漂亮,主要是为了防止插头氧化影响声音,由于金光滑柔软,还可以提供尽
合欢椅怎么使用量大的接触面积。低档耳机常采用镀镍插头,这样虽然也可以防止氧化,对声音却有一定的负面影响。
耳机的发声单元是耳机设计最复杂、技术含量最高的部分。动圈耳机的工作原理与动圈扬声器相同,音频信号输入音圈后,音圈产生的电磁场随信号的变化发生变化,变化的电磁场与磁路相互作用推动音圈和振膜的运动,振膜推动空气发声。动圈耳机发声单元主要由三个部分组成:磁路系统、振动系统、腔体和孔等声学结构。
磁路系统由恒磁体、极板和极靴组成,对耳机的性能和可靠性有直接的影响,恒磁体的一面是平板型的极板,另一面是呈“T”形的极靴,极板和极靴间形成一个尺寸较小的环形磁间隙,振动系统的音圈就悬挂在这个间隙内。通常高保真耳机使用的恒磁体为性能优良的钕铁磁体,较早的耳机型号有采用昂贵的钐钴磁体的,低档耳机一
般采用铁氧磁体。磁路系统的设计比较复杂,象SENNHEISER HD580、HD600这样的高档耳机其磁路采用了计算机辅助设计。磁路的生产工艺也是影响其性能的一个方面。设计和制造优良的磁路系统能对振动系统进行有效的控制,得到较高的灵敏度、较小的失真、良好的瞬态和低频。
振动系统由音圈和振膜组成。振膜是声辐射组件,推动空气振动发声,直接影响频率响应和灵敏度。它的性能主要取决于制造材料、形状和制造工艺。制造振膜的材料要求单位面积质量尽量小、机械强
度高、内阻尼大。机械强度越高、质量越轻有效的频率范围越宽广、输出声压级越高;内阻尼大,在大信号下失真小。现在振膜多使用易于热成型、质量轻、刚性好的聚酯薄膜,一些公司开发出了用于振膜的新材料,比如SONY 公司用从醋酸杆菌中分离得到的纤维素制造的“生物振膜”用于其高级耳机和耳塞,高频十分优异。振膜通常为圆形,中心设计为凸起的圆弧状,四周设计有加强筋,可以加强振膜的刚性并增大振膜的有效面积。有时为了气压平衡的需要,会在振膜的非
黄光工艺振动部分加工一小孔。振膜制造对工艺要求很高,在加工中的各种差数控制极严格。
音圈是动圈耳机的振动源,耳机的大部分参数,如阻抗、灵敏度、额定功率等都与它相关。音圈的性能主要取决于所用的材料和音圈的匝数也即音圈导线的长度。音圈的材料一般是铜漆包线,高级的耳机经常采用无氧铜漆包线和铜包铝漆包线,后者具有铜漆包线的优点,但质量更轻,也有采用银作为音圈材料的。音圈的漆包线的截面大多是圆形的,也有三角形和正六边形截面,这样线间结合的更紧密,线间电容减小,音圈质量进一步降低。音圈的尺寸对耳机性能也有一定的影响。音圈是在磁间隙中振动的,其直径应保证音圈位于磁间隙的中央,在振动时不会与极板和极靴相碰。另一方面,由于磁间隙在极板表面处的磁场已不均匀,线圈在非均匀的磁场中运动就会降低电-声能的转换效率,并引起耳机产生失真,所以音圈的高度要有一个恰当的选择。
复合硅微粉腔体和孔等声学结构是影响耳机性能的一个重要部分。固定磁路系统和振动系统的是一个塑料框架,
小麦草榨汁机叫台面,振膜的边缘就粘合在这个框架上。这个框架要有足够的刚性,不会因为固定磁路和振动部分发生形变,而且尽量少的传递振动。磁路和振动系统后面是耳机的外壳,外壳与台面之间形成一个腔体,这个腔体的大小、形状、内部填充的阻尼材料的位置、种类、数量影响耳机的频率响应,一般说这个腔体越大越容易获得高质量、深潜的低频。
耳机外壳有两类,一类带有孔或格栅与外界相通,振膜向后面辐射的声波可以直接辐射到外界,这样的耳机称作开放式耳机。它的耳垫可以是绕耳式或压耳式的,其声音自然、无压迫感、低频准确。开放式耳机质量较轻、佩带舒适。由于外壳是开放的,内外的声音可以出入耳机,如果开放的程度很高,就可以听到另一侧单元发出的声音,形成一定的互馈,改善空间感(实际上真正能形成互馈的耳机并不多)。耳机外壳如果是对外界封闭的就称为封闭式耳机,它的耳垫紧密的罩住或压住耳朵,可以隔绝部分外部噪音,这种耳机的耳垫大多为绕耳式,声音外泄的很少或根本不泄漏,在专业监听领域中使用的较多。一般来说封闭式耳机声音非常清晰,细节丰富,低频响应
好,但有可能会过多过重,或有压迫感,对大多数人来说没有开放式耳机听感舒适。还有所谓半开放耳机,它的外壳是开放式的,通过特别设计的结构或在一定位置填充阻尼物,使外界的声音可以选择性的进入耳机,获得开放式耳机的听感,声音外泄很少,类似封闭式耳机。耳机的外壳要坚固耐磨,不易发生形变、尽量少的传递振动。封闭abp263
式耳机的外壳如果是规则的半圆形,且内壁光滑,某个频率的声波就会在腔体中多次反射形成有害的谐振,造成低频延伸不良,轰响。所以在设计耳机外壳时形状一般是不完全规则的,并配合阻尼材料的使用,将谐振降低至人耳的听域之外。
具体的材料参数可以参见/archives/917.html。
振膜前面是耳机的前罩,这个前罩能起到保护娇嫩的振膜的作用,前罩上有声音通过的孔,使用不同材料、形状和孔径的前罩可以调整耳机的频率响应,达到要的求平衡。
从上面的叙述我们可以看出,磁路系统和振动系统决定了耳机大部分参数和性能,外壳、外罩的设计起到了保证耳机正常工作和调整频率响应的作用,实际在耳机的声学结构上很小的一点变化都会影响耳机的测试性能,并有可能带来听感的改变。
一只高档耳机的开发需要进行大量的研究,试用各种材料,探讨不同结构的优劣,使用先进的仪器设备进行测试,同时融入开发者对音乐的理解,其难度和投入不亚于一只顶级音箱的开发。它的生产也对工艺、设备提出了很高的要求,所以虽然耳机品牌和型号众多,真正称的上顶级的屈指可数。
耳机的参数与声音的关系
常见的耳机参数有:阻抗、灵敏度、总谐波失真(TDH)、频率响应。阻抗是音圈的直流电阻和感抗之
和,它涉及耳机与耳机放大器的匹配;灵敏度是施加于耳机上1mW的电功率时,耳机所产生的耦合于仿真耳(假人头)中的声压级,它代表耳机的电-声转换效率;耳机的总谐波失真一般很小,在最大承受功率时THD小于等于1%,高档耳机可达0.3%-0.1%,但它不代表耳机没有其他失真和音染;频率响应表示的是耳机可以响应的频率范围,它不能说明哪些频率的信号被衰减或提升,以及变化的量。所以这些参数只是耳机性能的一般性描述,与声音的好坏无关。
耳机的评价
从上面耳机的结构、参数的讨论我们可以了解到,耳机的优劣不是外在的因素能够决定的,某些材料和某种结构的采用并不能代表什么,优秀耳机的设计是现代电声学、材料科学、人体工程学和音响美学的完美结合。
耳机的评价需要客观测试与主观听音相结合。客观测试包括频率响应曲线、阻抗曲线、方波测试、互调失真等,这些不在我们的讨论范围之内,这里我们仅探讨耳机的
主观听音评价,这是我们选择耳机的必要步骤。
要正确评价耳机的声音首先要了解耳机声音的特点。耳机有音箱所不能比拟的优势,相位失真小,频率响应宽阔,瞬态回应好,细节丰富,能还原出细腻逼真的音。但是耳机有两个缺点,准确的说这是耳机的两个特点,它们是由耳机相对于人体的物理位置决定的。
一是耳机的“头中效应”。耳机营造的声学环境是自然界所没有的,自然界的声波是与人的头部和双耳相互作用后进入耳道的,耳机发出的声音则直接进入耳道;而唱片大部分又是为音箱重放制作的,声像位于两支音箱的连接在线,由于这两个原因我们用耳机时会感到声像形成在头中,听感不自然,容易引起疲劳。耳机的“头中效应”
可以通过采用特殊的物理结构加以改善,声场模拟软件和硬件在市场上也有不少。
二是耳机的低频。低频下段(40Hz-20Hz)和超低频(20Hz以下)是通过身体感知的,人耳对这些频段是不敏感的。耳机可以完美的重放这低频,但由于身体无法感觉到低频,会让人觉得耳机的低频不足。
既然耳机的听音方式与音箱是不同的,耳机对声音的均衡就有其特有的方式。耳机的高频一般都有所提升,这样给人以细节丰富声音平衡的感觉;一只低频完全平坦的耳机往往会让人觉得低频不足,声音偏瘦,适当提升低频也是耳机经常采用的手段,这样可以使耳机的声音显得丰满,低频下潜深。最常使用这一手段的是轻型耳机和耳塞,它们的振膜面积小无法重放出深沉的低频,通过提升低频中段(80Hz-40Hz)就可以得到令人满意的低频效果。真实的声音不一定是美好的,在耳机设计中这两种方法是有效的,但是过犹不及,如果过度的提升高频和低频会破坏声音的平衡感,刺激的音容易引起疲劳。中频对于耳机是一个敏感的区域,这里音乐的信息最丰富,也是人耳
最敏感的地方。耳机的设计对待中频是谨慎的,一些低档耳机其频率响应范围有限,却通过提提升中
频的上段和低段获得明亮尖锐的音和浑浊、有力度的声音,造成高低频不错的假像,长时间聆听这种耳机,会觉得索然无味。
优秀的耳机声音应该具有以下几个特点:
一、声底纯净,无任何令人不悦的“嘶”、“嗡”、“哄”声。
二、平衡感好,音从不过亮或过暗,高中低频能量分布均匀,频段间的融合自

本文发布于:2024-09-22 03:53:29,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/119551.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:耳机   声音   振膜   音圈   振动   系统   材料   设计
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议