立体声

双耳效应 Binaural Effect
如果声音来自听音者的正前方,此时由于声源到左、右耳的距离相等,从而声波到达左、右耳的时间差、相位差、强度差、音差为零,此时感受出声音来自听音者的正前方,而不是偏向某一侧。声音强弱不同时,可感受出声源与听音者之间的距离。
哈斯效应 Haas Effect
当两个强度相等而其中一个经过延迟的声音同时到聆听者耳中时,如果延迟在30ms以内,听觉上将感到声音好像只来自未延迟的声源,并不感到经延迟的声源存在。当延迟时间超过30ms而未达到50ms时,则听觉上可以识别出已延迟的声源存在,但仍感到声音来自未经延迟的声源。只有当延迟时间超过 50ms以后,听觉上才感到延迟声成为一个清晰的回声。这种现象称为哈斯效应,有时也称为优先效应。
德波埃效应 De Poher Effect
两只相同的扬声器对称地分布在听音者的正前方,如果送给两只扬声器的声音信号的功率相同,两只扬声器辐射的声强级差为0,到达听音者耳朵的时间差为0,则听音者感觉到声音只
有一个,来自正前方的对称轴上,人耳不能区分出两个声源。如果增加两只扬声器的辐射声强级差,则声方位(声像)向声音响的那只扬声器偏移,其偏移量大小与声强级差有关。 当声强级大于15dB时,听音者会感觉到声音来自声强级大的那只扬声器。如果两只扬声器的声强级差为0,但两只扬声器辐射声音有一些时间差,这时听音者感觉到声像向先到达的那只扬声器方向偏移。当时间差大于3ms时,声音(声像)好像完全来自声音先到达的那只扬声器。实验表明,声强级差与时间差所引起的效是是类似的,其间可以相互补偿,并且声强级差在15dB以下、时间差在3ms以内时,它们之间呈线性关系,每5dB的声强级差引起的声像偏移相当于两声音引起的时间差1ms的效果,这便是德波埃效应。这种效应说明了人耳同时听多个声源发声的方位感的有限性,也是立体声放声所要利用的效应。
掩蔽效应 Masking Effect
掩蔽效应指人的耳朵只对最明显的声音反应敏感,而对于不敏感的声音,反应则较不为敏感。例如在声音的整个频率谱中,如果某一个频率段的声音比较强,则人就对其它频率段的声音不敏感了。应用此原理,人们发明了mp3等压缩的数字音乐格式,在这些格式的文
轮胎标签件里,只突出记录了人耳朵较为敏感的中频段声音,而对于较高和较低的频率的声音则简略记录,从而大大压缩了所需的存储空间。在人们欣赏音乐时,如果设备对高频响应得比较好,则会使人感到低频响应不好,反之亦然。一种频率的声音阻碍听觉系统感受另一种频率的声音的现象称为掩蔽效应。前者称为掩蔽声音(masking tone),后者称为被掩蔽声音(masked tone)。掩蔽可分成频域掩蔽和时域掩蔽。
劳氏效应 Lau’s Effect
一种立体声范围的心理声学效应,将信号延时后以反相叠加在直达声信号上,立即就会产生明显的空间印象, 声音似乎来自四面八方,听音者有置于乐队之中的感受。
1、立体感
 
  主要由声音的空间感(环绕感)、定位感(方向感)、层次感(厚度感)等所构成的听感,具有这些听感的声音称为立体声。自然界的各种声场本身都是富有立体感的,它是模拟声源声象最重要的一个特征。根据哈斯效应和德波埃效应,只要通过对声音的强度、延
时、混响、空间效应等进行适当控制和处理,在两耳人为的制造具有一定的时间差△t、相位差△θ、声压差△P的声波状态,并使这种状态和原声源在双耳处产生的声波状态完全相同,人就能真实、完整地感受到重现声音的立体感。与单声道声音相比,立体声通常具有声象分散、各声部音量分布得当、清晰度高、背景噪声低的特点。
  2、定位感
若声源是以左右、上下、前后不同方位录音后发送,则接收重放的声音应能将原声场中声源的方位重现出来,这就是定位感。根据人耳的生理特点,由同一声源首先到达两耳的直达声的最大时间差为0.44ms~0.5ms,同时还有一定的声压差、相位差。比较常见的一种说法是:20Hz~200Hz低音主要靠人两耳的相位差定位,300Hz~4kHz中音主要靠声压差定位,更高的高音主要靠时间差定位。定位感主要由首先到达两耳的直达声决定,而滞后到达两耳的一次反射声和经四面八方多次反射的混响声主要模拟声像的空间环绕感。
  3、空间感
  一次反射声和多次反射混响声虽然滞后直达声,对声音方向感影响不大,但反射声总是从
四面八方到达两耳,对听觉判断周围空间大小有重要影响,使人耳有被环绕包围的感觉,这就是空间感。水貂肉>u型管
多声道(Multi Channel)
  尽管双声道立体声的音质和声场效果大大好于单声道,但在家庭影院应用方面,它的局限性也暴露了出来。双声道立体声系统只能再现一个二维平面的空间感,即整个声场是平平地摆在我们面前,并不能让我们有置身其中的现场感。当然,由于在音乐会现场,观众原本就是坐在台下的,而乐队演奏人员则位于舞台之上,立体声所能再现的这种简单的声场方位感与现场音乐会的方位感是基本符合的,因而它仍能满足欣赏需求。但是,在欣赏影片时,整体声场全方位的三维空间感无疑可以给观众一种鲜活的,置身于其中的临场感,因此,多声道技术也开始发展起来。
  1974年7月,杜比实验室与EMI录音室合作开发了Dolby Stereo Film Sound电影录音系统,由此,电影进入了立体声时代。1977年,杜比实验室又成功研发出了多声道环绕系统—Dolby Stereo(杜比立体声),电影正式进入多声道环绕时代。杜比立体声仍属于模拟信号系统,其大致原理是将4个声道(左、中、右、后)的信息通过矩阵编码方式保存在两
条音轨上,而后置声道是一条单声道音轨,但通过两路后置扬声器播放。这一系统也就是目前流行的Dolby Digital 5.1声道系统的前身。在随后的20年内,环绕声技术逐渐成熟起来,数字录音技术也有了飞速的发展。1994年,杜比实验室与日本先锋公司成功推出了一种崭新的采用数字技术的环绕声制式—Dolby Surround Audio Coding-3,也就是我们所熟知的杜比AC-3系统,由此,电影音频技术进入了数字时代。1998年,杜比实验室正式将杜比AC-3环绕声命名为杜比数码环绕声(Dolby Surround Digital),也就是我们现在常说的Dolby Digital。
cmmb移动电视
  Dolby Digital环绕声系统由5个全频域声道和1个超低音声道组成,也称为5.1声道,5个声道分别是左前、右前、前中置、左环绕和右环绕。超低音声道主要负责传送低音信息(<120Hz),其目的是为了补充其他声道的低音内容,使一些包含爆炸、撞击等低音的场景的声效更好。这6个声道的信息在制作和还原过程中全部数字化,信息损失很少,全频段细节十分丰富。
  1998年10月,杜比实验室在美国亚特兰大举行的Show East Film Exhibition上宣布推出Dolby Surround EX系统,这是一种在Dolby Digital系统上进行扩充的系统,由原来的5.1声
道升级为6.1声道,即在原有的5个主声道的基础上,又增加了1个独立的Back Surround声道(后环绕或称后中置),从而使后部声场的连贯性和声音的绵密度大大增强,有效地改善了原来的后部声场声音中空的缺陷。1999年美国首映的《星球大战前传首部曲》是第一部采用了这种Dolby Surround EX系统的影片。
  这时可能有朋友会问:现在还有一种7.1声道系统,那这是一种什么样的系统呢?7.1与6.1的差别在哪里呢?实际上,7.1声道是在系统中使用一对后环绕扬声器来代替6.1声道的一只后环绕扬声器。目前6.1声道的影片越来越多,但到目前为止,还没有一部7.1声道的影片出现。为什么呢?这是因为这个7.1声道系统并不是一个行业标准,而是一项由某些音响器材公司研发出来的,并将相关技术应用在影院功放上的技术。
泡钉  在7.1声道系统中,Back Surround(后中置)的单声道信号经过矩阵运算,加入延时、回响等多项参数之后,被分配到左后环绕与右后环绕两个声道中,而不是简单地将一路单声道信号平均分配到两个后环绕声道中来。简而言之,这种方案最大的优点就是进一步增强了后部声场的方向感和声像移动的连贯性与真实性。
双声道的Hi-Fi系统(高保真系统)与多声道的AV系统(家庭影院系统)是音响器材市场的
两大阵营。
六项基本设计(图)
  设计环绕声声音时,声音设计师可以根据情节以及要混合的素材制作出各种表现形式。可将环绕声设计分成以下的基本设计项。
  下面是环绕声声音设计中的六个基本方面和具体表现方法,用在各种场合中体现其效果。
  1.环绕气氛(氛围和声场表现效果)
  无论音乐或戏剧这是最基本的环绕声设计内容。
  音乐方面,环境空间可以在听众背后创建出来,听众能感知犹如身处厅堂,具有临场感和氛围体验。在演奏管弦乐的音乐会中,厅堂的结构风格、听众热烈反应的鼓掌和欢呼、以及自舞台上向厅堂内扩散的扩声声音,这一切能使声音表现出现场真实性。
  对于实况转播,有着大量观众的室外体育比赛,诸如棒球、足球和网球,以及包括排球、滑冰、冰球、篮球和相扑等室内体育比赛,通过环绕气氛的设计能够使体育场馆内激动人
心场面的景像和氛围逼真地表现出来。
  至于戏剧,环境氛围是环绕声设计中最需要体现的,它能够较清晰地反映出场景情况和戏剧剧情的进展。根据当前表演的场景所在,例如是起居室、法庭、地下停车场、丛林、沙漠、深海或宇宙飞船等,可以开发出各种各样的环绕声设计。
  戏剧的环境气氛与音乐会的环境气氛其不同点在于,戏剧中不必同时录下现场的环绕声成份。对戏剧素材经常可以进行新的播放加工,以最好的方式进行组合,使之适合所选择现场的表现方法。
  对于音乐,在话筒布置上录音师可以发挥他们自己的才能,做到以连续的方式捕捉整个范围内的空间信息,给出稳定的声场。 喷墨打印机墨水
 
  2.飞越过渡(直线运动表现效果)
  对于在环绕声上没有概念和体验的听众来说,飞越过渡形式的环绕声设计最能使他们感受
到环绕声是什么。所谓飞越过渡,顾名思义,是使特定的声音沿着前后的纵深方向移动的一种设计。例如,喷气飞机的起飞和着陆,激烈战斗场面中弹的沿轨迹飞行,疾驰汽车的飞跃,潜水艇的驶过,以及宇宙飞船的航行等,对这些场景设计出瞬间的环绕声效果将给人们冲击性的感受。

本文发布于:2024-09-24 22:33:12,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/4/119024.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:声音   系统   声道   环绕声   设计   环绕   声场
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议