车型识别综述

车型识别综述
一.课题的背景和意义
智能交通系统(ITsIntelligentTransportationSystem)是集计算机、信息、电子及通信等多种高新科技手段于一体的交通控制和管理系统,是21世纪交通的重要发展方向。
智能交通系统中的核心功能是对过往车辆的准确检测和正确的车型识别。当前对车辆检测分类技术的研究主要有两个技术流派:车辆自动识别(Auto Ve hlcle Identification)和车辆自动分类(AutoVehicle Classification)。前者是利用车载设备与地面设备互识进行,该技术主要用于收费系统中,在发达国家使用范围较广,如美国[2]AE-PASS系统、日本的ETC系统,全球卫星GPS定位等。后者是通过检测车辆本身固有的参数,在一定车辆分类标准下运用适当的分类识别算法,主动地对车辆进行分型,这一类技术应用比较广泛,己经有很多成熟的系统应用在实际生活中,该类技术可以通过射频微波、红光、激光、声表面波等方式来自动识别车辆信息,也可以使用视频图像处理的方式来识别车牌、车型等车辆信息。比较成熟技术有环形线圈检测、激为红外线检测、超声波/微波检测、地磁检测等[3],但这几种方法各有优劣,优点是识别精确比较高,但缺点也很明显,主要缺点有施工
和安装过程十分复杂,影响正常交通秩序,维护困难,主要设备易损坏,花费较大等。
近年来随着计算机多媒体技术和图像处理技术的发展,基于视频的车辆自动分类识别技术在现代交通控制系统中占的分量也越来越大,社会各界投入的研究力量也越来越多。该类技术可以适应动态交通状况的变化,通过实时采集大量的交通流量数据并将其传输到交通管理中心,中心通过系统提供的数据可以迅速做出控制决策,解决交通拥堵等问题。同时,利用该技术可以分析道路的车流量信息,有利于公路网的总体规划及道路建设。但上述功能的实现依赖于交通数据的采集和处理,传统的数据采集器方法,不能大范围覆盖检测区域,缺乏灵活性且功能单一。因此,随着当前交通系统中视频设备的大量引入,越来越多地采用视频检测方法作为交通数据采集的手段,为智能交通系统提供所需的路面运动车辆信息。
由于我国对道路监控[4]的日益重视,视频检测技术己成为智能交通领域最重要的信息采集手段,综合评比,将视频检测技术应用于高速公路和城市道路具有很大的可行性,基于视频车型识别系统,将全面提高公路和信息采集和安全管理的水平,在智能交通系统中一定会发挥越来越重要的作用。
基于视频的车型识别系统是利用计算机分析通过摄像头和图像采集卡获取视频图像,通过对特定区域的视频图像处理分析,完成车辆检测和车辆分类识别。该技术绿、环保,使用简洁,维护方便,只需在路面上方架设一部或几部摄像机,或利用交通部门现有的电视监控设备,将路面实时视频图像输入系统中,可以立刻进行分析,提取出需要的交通流信息。因此,与其他技术相比,视频检测技术的优越性体现在:
(1) 采用非接触检测方式,安装维护不必破开路面,不影响路面寿命,不影响交通;
2)可以检测更大范围内的交通流信息,从而减少设备数量,节约资金;
3)可以在采集交通流信息的同时提供交通的实时视频图像,便于监察;
4)对于某些应用,比如交通量调查等,可以把视频图像采集存储后,离线进行分析处理;
5)当环境发生变化,或系统移动到他处使用时,只需简单设置,系统即可重新投入使用。
6)可以综合提供交通数据信息和视频图像,便于对现场的全面、直观检测。可以提供流量、速度、占有率、车长度分类、车头时距与车头间距、排队长度等丰富的交通数据监控信息;而且借助视频图像的参考,可以极大的提高监控质量。
综上所述,开展基于视频图像的车型识别研究意义重大,其研究成果不仅具有广阔的应用前景,而且对于解决拥堵的交通环境、规划城市交通系统和尽快发展我国的智能交通系统等具有重要的战略意义。
 国内外研究现状
2.1  国外的研究现状
(1) 上世纪70 年代初,德国西门子公司开始研究自动车辆识别,由于受当时的整技术、工艺水平的限制,未能获得满意的效果。
(2) Collins [5]创建了一个路上移动目标的检测、跟踪、识别系统,用训练过的神经网络来识别运动目标是人、人、车辆还是干扰,网络的输入特性量有目标的分散性度量、目标大小目标表面大小与摄影机监视区域大小的相对值。车辆又进一步区分为不同类型和颜
(3) Tan  Baker [6]描述了一种车辆定位和识别(小型公共汽车、轿车、卡车等) 的方法,在一个小窗口内,该方法依据图像梯度进行。利用地面约束以及大部分车辆外形受两条直线约束的事实,可得到车辆的姿态。
(4) Fung [7]用高精度摄像机观察车辆的运动来估计车辆形状,通过估计特征点(车体拐角处)得到车辆轮廓。基本思想是高特征点的移动速度大于低特征点的移动速度,因为高特征点离摄像机近,车辆轮廓可用与车辆识别。
(5) 加州大学伯克莱分校D.Koller和他的研究小组提出了在同一时刻检测和跟踪多辆车,得到车辆形状信息的方法,并采用图像帧差技术进行运动分割,背景图像用Kallnan滤波进行更新。
(6) G.LForesti等开发了一个车辆跟踪系统,其中包括一个多级识别模块实现车辆识别。J.Ferryman[8]建立了一个参数化的可变形三维模板,该模板通过演变,可适用于各种车辆。G.D.Sulhvan[]采用三个一维模板检测是否有某类型车辆,当检测存在时,再用该类
型车辆对应的二维模板进行跟踪,即车辆识别的验证过程,该方法采用了多模板的思想,有一定的创新作用。
(7) Jolly[9]用变形模板来研究车辆识别,首先,建立目标车辆车头部分的侧视图以及正视图的变形模板。通过直方图交集,车辆的RGB直方图也必须比较,合适的车型模板边的点集也通过点集间的Hausdorff距离与其他车辆模板进行比较。
(8) 内华达大学的Sun Zehang使用Gabor滤波和支持向量机的方法完成车辆检测。Gabor滤波提供了获得灰度不变性特征的维数,可以适用于光照变化和尺度变化的条件下,车辆具有较强的边缘和水平线信息,它们具有方向性和尺度。Gabor滤波能够对这些特征有更强的鲁棒性。在车辆检测阶段利用SVM进行验证。同时也使用进化Gabor滤波优化来完成特征抽取。
此外,Sun Zehang还使用量化Haar小波特征和支持向量机的特征选择和分类的车辆检测方法。文中指出,小波特征由于其压缩性表示而非常适合车辆检测。它编码边缘信息,产生多比例信息并能够被有效计算。此外,通过对于小波系数的量化来实现重要信息的编码。车辆检测系统的训练和测试的数据集是采自于MichiganDearbom32×32图像数据
集。
(9) Wisconsin大学的Ran Bin等人提出的基于视觉的检测算法通过计算车辆运动参数,跟踪多个车辆目标。该系统主要由四个模块组成:对象检测模块,对象识别模块,对象信息模块,对象跟踪模块。为了检测路上潜在的对象,包括对称性形状,车辆纵横比等特征在这一过程中被使用。两层的神经元网络用以训练识别不同车型。
(10)上世纪80年代后期,随着现代技术的发展,一系列关键技术如低功耗处理器、高性电池和微波集成电路等的突破,使自动车辆识别技术获得了突破性的进展,为交通管理自动化开辟了一个新纪元。
2.2 国内研究现状
 2.2.1 概述
  20世纪80年代以来,人们就意识到智能化交通管理将是社会发展的必然,国内外许多学者开始了交通车辆检测系统的相关研究,其中包括运动车辆检测、车辆流量的大小、车速的快慢以及的识别等,这些技术参数的分析涉及到运动目标跟踪、模式识别、网
络技术等专业领域,同时,需要解决这一类问题还存在很多难点,做到完全自动化而不需要人工干预也很难,而且视频图像处理和识别是属于尖端的科技。尽管世界各国的学者为此做了大量的工作,也取得了较为显著的成果,但仍然需要进一步研究。
   过去的二三十年中,人们对运动目标检测和运动目标识别作了大量深入的研究,提出了很多行之有效的方法。国际上不少公司也都推出了自己的视频检测产品,如美国的AutoscopevTDS、西门子的ARTEMIs、比利时的Traficon等,而且已经在国外推广使用。国内上海德威等多家公司也分别推出了自己的产品,但目前这些产品主要是基于车牌识别或是基于异常检测的,基于视频的车型自动检测识别产品还没有实践应用价值。在国内,中国科学研究院计算所、哈尔滨工业大学、浙江大学、四川大学等高校、研究所均在这一领域进行探索。
 2.2.2 目前国内关于车型识别研究的主要方向为:
(1) 基于神经网络的方法:
神经网络是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。在车型识别方面,主要是利用神经网络进行车型识别,也可采用神经网络与其它技术结合,如神经网络与模糊技术结合、神经网络与分形技术结合等等。
以下是神经网络结合其它知识的车型识别方法:
a. 利用Canny算子检测车辆区域的边缘,提取车辆轮廓,直接计算车辆轮廓的矩不变量,将其作为车型分类的特征量,然后建立具有3层结构的BP神经网络,将不变矩特征量作为神经网络的输入,根据神经网络的输出实现车型的分类[w1],准确率达到98.7%
b. 利用脉冲神经网络模型对运动车辆进行边缘提取的基础上提取运动目标的不变线矩特征,再用这些特征训练神经网络对车型进行识别的方法[w2]。试验结果表明该模型能准确的提取运动目标的特征,达到了较高的识别率。
c. 分析处理一定量的数据,提取车辆的特征值(由上顶长、下顶长、高等参数组成),利用神经网络的自组织、自主学习等特性,构造一种适当的神经网络,通过训练BP神经网络,达到能识别一般的车型如轿车、货车、客车的目的,并达到能区分小、中、大、特大型四
种型号车辆、构造完整的车型识别系统的目标。该方法综合了神经网络、模式识别等相关算法,对车辆的目标轮廓进行整体识别,达到了较高的识别率[w3]
d. 对信号样本进行三层小波包分解提取各车型不同频带的能量来构造特征向量。接着建立遗传神经网络模型,并分别采用传统的BP神经网络和遗传BP神经网络对样本进行训练和识别[w4],实验结果表明,与传统BP神经网络分类方法相比较,遗传BP神经网络分类方法收敛速度快,分类效果好,具有较高的识别率
(2) 基于小波变换的车型识别:
     小波变换是以某些特殊函数为基将数据过程或数据系列变换为级数系列以发现它的类似频谱的特征,从而实现数据处理。小波变换是空间(时间)频率的局部变换,因而能有效地从信号中提取信息。通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。
a. 利用[w7]小波多尺度分析边缘检测算法实现特征值的提取,BP神经网络实现车型的分类,该方法达到了满意的效果。

本文发布于:2024-09-21 21:44:09,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/95098.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:车辆   检测   识别   技术   信息
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议