微带缝隙天线的仿真分析

微带缝隙天线的仿真分析
摘要
微带缝隙天线具有结构简单、加工方便、体积小、宽频带等特性,在微波毫米波系统应用广泛。论文利用Ansoft HFSS 12.0对一开在50×80 mm2地面上的缝隙天线进行了建模和仿真,缝隙的尺寸约为四分之一波长,开路在地面的边缘,由微带传输线馈电。文中计算了天线的回波损耗和方向图,与文献结果比较吻合,证明了仿真方法的正确性,可为微带缝隙天线的设计工作提供一定的参考。
关键词微带缝隙天线回波损耗方向图
Abstract
Slot antenna has a simple structure, easy to process, small size, broadband and other characteristics, widely used in microwave, millimeter wave systems. In this paper, Ansoft HFSS 12.0 is used to analyze the slot antenna on a 50 × 80 mm2 open ground .The size of the slot is about quarterwavelength, cut in the finite ground plane edge, fed by a microstrip transmission line. The paper calculated the return loss and antenna radation pattern. Good agreement with the literature results proved the correctness of the simulation method can provide some reference for the design of the microstrip slot antenna.
Keywords microstrip slot antenna S11 radiation pattern
目录
前言1
第1章绪论2
1.1 研究背景及意义  2
1.2 天线特性的主要参数  3
1.3 微带缝隙天线的应用  6
1.4 Ansoft HFSS软件简介7
1.5 论文的内容及安排8
第2章缝隙天线的理论分析9 2.1 理想缝隙天线9
2.2 有限大理想导体面缝隙天线 9 2.3 圆柱体表面上缝隙天线阵11
2.4 微带缝隙天线13
2.4.1 微带缝隙天线的结构13
2.4.2 微带模型13
2.4.3 微带天线的辐射机理14
2.4.4 宽带缝隙天线16
第3章微带缝隙天线的仿真20
3.1 创建微带缝隙天线模型20
3.2 设置频率23
3.3 仿真结果24
结束语28
谢辞29
参考文献30
前言
微带天线是近30年来发展起来的一种新型天线,按结构可以把它分为两大类,一种是微带贴片天线,另一种是微带缝隙天线。按形状分类,可分为矩形、圆形、环形微带天线等。按工作原理分类,无论那一种天线都可分成谐振型(驻波型)和非揩振型(行波型)微带天线。前一类天线有特定的谐振尺寸,一般只能工作在谐振频率附近;而后一类天线无谐振尺寸的限制,它的末端要加匹配负载以保证传输行波。
同常规的微波天线相比,微带天线具有一些优点。因而,在大约从100MHz到50GHz的宽频带上获得了大量的应用。与通常的微波天线相比,微带天线的一些主要优点是:重量轻、
体积小、剖面薄的平面结构,可以做成共形天线;制造成本低,易于大量生产;可以做得很薄,因此,不扰动装载的宇宙飞船的空气动力学性能;无需作大的变动,天线就能很容易地装在导弹、火箭和卫星上;天线的散射截面较小;稍稍改变馈电位置就可以获得线极化和圆极化(左旋和右旋);比较容易制成双频率工作的天线;不需要背腔;微带天线适合于组合式设计(固体器件,如振荡器、放大器、可变衰减器、开关、调制器、混频器、移相器等可以直接加到天线基片上);馈线和匹配网络可以和天线结构同时制作。鉴于这些优点,微带天线越发得到专家和研究者的注意,它的应用前景也
越来越广阔。
第1章绪论
1.1 研究背景及意义
天线是在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。
天线按工作性质可分为发射天线和接收天线。按用途可分为通信天线、广播天线、电视天线、雷达天线等。按工作波长可分为超长波天线、长波天线、中波天线、短波天线、超短波天线、微波天线等。按结构形式和工作原理可分为线天线和面天线等。描述天线的特性参量有方向图、方向性系数、增益、输入阻抗、辐射效率、极化和频
天线按维数来分可以分成两种类型:一维天线和二维天线。一维天线由许多电线组成,这些电线或者像手机上用到的直线,或者是一些灵巧的形状,就像出现电缆之前在电视机上使用的老兔子耳朵。单
极和双级天线是两种最基本的一维天线。二维天线变化多样,有片状(一块正方形金属)、阵列状(组织好的二维模式的一束片),还有喇叭状,碟状。
天线根据使用场合的不同可以分为:手持台天线、车载天线、基地天线三大类。手持台天线就是个人使用手持对讲机的天线,常见的有橡胶天线和拉杆天线两大类。车载天线是指原设计安装在车辆上通讯天线,最常见应用最普遍的是吸盘天线。车载天线结构上也有缩短型、四分之一波长、中部加感型、八分之五波长、双二分之一波长等形式的天线。基地台天线在整个通讯系统中具有非常关键的作用,尤其是作为通讯枢纽的通信台站。常用的基地台天线有玻璃钢高增益天线、四环阵天线(八环阵天线)、定向天线。
微带天线的概念早在1953年就由G.A.DeSchamps提出,在20世纪50年代和60年代只有一些零星的研究。直到20世纪70年代初期,当微带传输线的理论模型及对敷铜的介质基片的光刻技术发展之后,第一批具有许多设计结构的实用的微带天线才被制造出来。缝隙天线最早是在1946年H.G.Booker提出的,同微带天线一样最初没有引起太多的注意。缝隙天线可以借助同轴电缆很方便地馈送能量,也可用波导馈电来实现朝向大平片单侧的辐射,还可以在波导壁上切割出
缝隙的阵列。缝隙开在导电平片上,称为平板缝隙天线;开在圆柱面上,称为开缝圆柱天线。开缝圆柱导体面是开缝导体片至开缝圆柱导体面的进化。波导缝阵天线由于其低损耗、高辐射效率和性能等
一系列突出优点而得到广泛应用;而平板缝隙天线却因为损耗较大,功率容量低,效率不高,导致发展较为缓
慢。到1972年,Y.Yoshimura明确提出微带馈电缝隙天线的概念。
学者在微带缝隙天线的研究方面已经取得一些成就,显示其很多优点。如馈电网络和辐射单元相对分离,从而把馈线对天线辐射方向图的影响降到最小,对制造公差要求比贴片天线低,可用标准的光刻技术在敷铜电路板上进行生产,在组阵时其单元间隔离可比贴片天线更大。特别是对于运动物体所用天线,微带缝隙天线可以说是理想的选择,因为它可以与物体的表面做得平齐,没有凸起部分,用于快速飞行器表面时不会带来附加的空气阻力,既隐蔽又不影响物体的运动。
从微带天线的概念提出以来,由于它剖面薄、重量轻、可与载体共形、易与有源器件集成等优点,已经被广泛地应用于卫星通信、导航等领域。但是,微带天线频带较窄的突出缺点又限制了它的实际应用。目前在高频应用上,采用更多的是微带缝隙天线,它具有对加工精度要求低,可用标准的光刻技术在敷铜电路板上进行生产的优点,尤其是微带宽缝天线更是有效地拓宽了频带。目前缝隙天线(包括波导缝隙天线)已被广泛地应用于无线移动通信天线以及卫星直播电视
天线。
1.2 天线特性的主要参数
天线的特性参数主要有方向函数或方向图,极化特性,频带宽度,输入阻抗等,为了方便对天线的方向图进行比较,就需要规定一些表示方向图特性的参数。这些参数有:天线增益G(或方向性Gd)、波束宽度(或主瓣宽度)、旁瓣电平等。下面就简单介绍一下天线特性参数。
1.极化特性
指天线在最大辐射方向上电场矢量的方向随时间变化的规律。按天线所辐射的电场的极化形式,可将天线分为线极化天线、圆极化天线和椭圆极化天线。线极化又可分为水平极化和垂直极化;圆极化和椭圆极化都可分为左旋和右旋。
2.输入阻抗
天线阻抗简单地讲就是在天线部分上的电压和电流比率。由于在天线各点的电压和电流的分配不尽相同,各点的阻抗也不相同,其中馈电点的阻抗最为重要,对半波长偶极子天线来说就是中央天线。为使无线电收发器具有最佳的功率传送,这点的阻抗应该和馈线电缆的阻抗相同。
天线的输入阻抗等于传输线的特性阻抗,才能使天线获得最大功率。
3.带宽
天线的电参数都与频率有关,当工作频率偏离设计频率时,往往要引起天线参数的变化。当工作频率变化时,天线的有关电参数不应超出规定的范围,这一频率范围称为频带宽度,简称为天线的带宽。
4.远区场
如果所观测点离开波源很远、很远,波源可近似为点源。从点源辐射的波其波阵面是球面。因为观测点离开点源很远很远,在观察者所在的局部区域,其波阵面可近似为平面,当作平面波处理。符合这一条件的场通常称为远区场。这里所谓很远很远都是以波长来计量的。
5.方向函数或方向图
离开天线一定距离处,描述天线辐射的电磁场强度在空间的相对分布的数学表达式,称为天线的方向性函数;在离开天线一定距离处,描述天线辐射的电磁场强度在空间的相对分布的图形就叫天线的方向图。最大辐射波束通常称为方向图的主瓣。主瓣旁边的几个小的波束叫旁瓣。
天线增益是在波阵面某一给定方向天线辐射强度的量度。它是被研究天线在最大辐射方向的辐射强度与被研究天线具有同等输入功率的各向同性天线在同一点所产生的最大辐射强度之比。              π
4馈入天线总功率
率单位立体角最大辐射功=G                              (1.1)
天线方向性D G 与天线增益G 类似但与天线增益定义略有不同。              π
4总的辐射功率
率单位立体角最大辐射功=D G                              (1.2)
因为天线总有损耗,天线辐射功率比馈入功率总要小一些,所以天线增益总要比天线方向性小一些。
理想天线能把全部馈入天线的功率限制在某一立体角B Ω内辐射出去,且在B Ω立体角内均匀分布。这种情况下天线增益与天线方向性相等。
B
D G G Ω=
=π4                                      (1.3) 理想的天线辐射波束立体角B Ω及波束宽度B θ
图1.1  立体角及波束宽度
实际天线的辐射功率有时并不限制在一个波束中,在一个波束内也非均匀分布。在波束中心辐射强度最大,偏离波束中心,辐射强度减小。辐射强度减小到3db 时的立体角即定义为B Ω。波束宽度B θ与立体角B Ω关系为 :
24B
B θπ
=Ω                                                    (1.4)
旁瓣电平是指主瓣最近且电平最高的。第一旁瓣电平,一般以分贝表示。方向图的旁瓣区一般是不需要辐射的区域,其电平应尽可能的低。
天线效率A η定义为:
1P P P P P i A +==
∑∑∑η                                      (1.5)
式中,i P 为输入功率;1P 为欧姆损耗;∑P 为辐射功率。
天线的辐射电阻∑R 用来度量天线辐射功率的能力,它是一个虚拟的量,定义如下:设有一个电阻∑R ,当通过它的电流等于天线上的最大电流时,其损耗的功率就等于辐射功率。显然,辐射电阻越大,天线的辐射能力越强。由上述定义得辐射电阻与辐射功率的关系为
∑∑=R I P m 22
1                                          (1.6)
即辐射电阻为
22m I P R ∑∑=
(1.7)
仿照引入辐射电阻的办法,损耗电阻R1为

本文发布于:2024-09-22 06:38:17,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/94643.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:RFID论文
标签:天线   缝隙天线   辐射
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议