多组分精馏

第三章 多组分精馏
在化工原理课程中,对双组分精馏和单组分吸收等简单传质过程进行过较详尽的讨论。然而,在化工生产实际中,遇到更多的是含有较多组分或复杂物系的分离与提纯问题。
设计多组分多级分离问题时,必须用联立或迭代法严格地解数目较多的方程,这就是说必须规定足够多的设计变量,使得未知变量的数目正好等于独立方程数,因此在各种设计的分离过程中,首先就涉及过程条件或独立变量的规定问题。
多组分多级分离问题,由于组分数增多而增加了过程的复杂性。解这类问题,严格的该用精确的计算机算法,但简捷计算常用于过程设计的初始阶段,是对操作进行粗略分析的常用算法。
§3-1分离系统的变量分析
设计分离装置就是要求确定各个物理量的数值,但设计的第一步还不是选择变量的具体数值,而是要知道在设计时所需要指定的独立变量的数目,即设计变量。
一、设计变量
1.设计变量
⎩⎨⎧-=:可调设计变量固定设计变量
a x c v i N N N N N :
v N :描述系统所需的独立变量总数。
c N :各独立变量之间可以列出的方程式数和给定的条件,为约束关系数。      要确定i N ,需正确确定v N 和c N ,一般采用郭慕孙发表在AIchE J (美国化学工程师学会),1956(2):240-248的方法,该法的特点是简单、方便,不易出错,因而一直沿用至今。
郭氏法的基本原则是将一个装置分解为若干进行简单过程的单元,由每一单元的独立变量数e v N 和约束数e c N 求出每一单元的设计变量数e i N ,然后再由单元的设计变量数计算出装置的设计变量数E i N 。在设计变量i N 中,又被分为固定设计变量x N 和可调设计变量a N ,x N 是指确定进料物流的那些变量(进料组成和流量)以及系统的压力,这些变量常常是由单元在整个装置中的地位,或装置在整个流程中的地位所决定,也就是说,
实际上不要由设计者来指定,而a N 才是真正要由设计者来确定的,因此郭氏法的目的是确定正确的a N 值。
2.独立变量与约束数
①独立变量数
系统的独立变量数可由出入系统的各物流的独立变量数以及系统与环境进行能量交换情况来决定。
单相物流:由相律  12+=+-=C C f π
相律所指的独立变量是指强度性质。即温度、压力和浓度,与系统的量无关的性质,而要描述流动系统,必须加上物流的数量。
即独立变量数2+=C
相平衡物流:由于要加上各相的流率,则
独立变量数22222+=++-=+=C C f
其余情况可以类推。
如果所讨论的系统除物流外,尚有热量和功的进出,那么相应在v N 中加入说明热量和功的变量数。
②约束数
约束数可以依靠热力学第一定律和第二定律来计算,即由物料衡算,热量衡算和平衡关系写出变量之间的关系式。
⑴物料平衡式:C 个组分有C 个(组分:C-1,总物:1)
⑵能量平衡式:一个系统一个,不能对每个组分分别写。
⑶相平衡关系式:)1(-πC 个,:π相数。
相平衡关系是指处于平衡的各相温度相等,压力相等以及组分i 在各相中的逸度相等,我们仅考虑无化学反应的分离系统,故不考虑化学平衡约束数。
⑷内在关系:约定的关系,如已知的等量、比例关系。
二、单元的设计变量
1.无浓度变化的单元
如分配器,泵,加热器,冷却器,换热器,全凝器,全蒸发器,因为这些单元中无浓度变化,故每一物流均可看成单相物流。如加热器。
521)2(2+=++=C C N e v
约束数:物料平衡式      C 个
能量平衡式      1个
1+=∴C N e c ;4+=-=C N N N e c e v e i
其中:3+=C N e x (进料C+2个,压力1个)
1=e a N ,为系统换热量或出换热器的温度,从而可计算。
对冷却器、泵的情况类似。
2.有浓度变化的单元
混合器、分相器、部分蒸发器、全凝器(凝液为两相),简单的平衡级等。在这些单元中,描述一个单相物料的独立变量数是C+2,一个互成平衡的两相物料的独立变量数也是C+2。如果有两个物流是互成平衡的,如离开分相器的两个物料,也可以把它们看成是一个两相物流,因为互成平衡的两个物流间可列出C+2个等式(压力相等,温度相等,C 个组分的化学位相等),因此和算成一个两相物流
时的i N 值是一样的。计算c N 时,物料平衡式对各种情况都是C 个,即对每一组分可写出一个衡算式。其他情况与无浓度变化相同。如绝热操作的简单平衡级。
共有四个物流,但因n V 与n L 为互为平衡的物流,所以可以把
它们看成是一个两相物流,故)2(3+=C N e v 个,因为可列出C 个物料
衡算式和一个热量衡算式。
52)1()2(3,1+=+-+=+=∴C C C N C N e i e c
其中:52+=C N e x ,因为有两股进料,且进料之间以及进料与
n 板上的压力不相等,0=∴e a N
无论是有浓度变化或无浓度变化的单元,可调设计变量均与组分的数目C 无关,组
分数只在固定设计变量中出现。而且e a N 都是一个很小的整数,即0、1。因此,计算整
个装置的a N 是比较方便的。
三、装置的设计变量
分离装置是由若干单元所组成的,如单个平衡级、换热器和其他与分离装置有关的单元综合而得,即装置的u i N 是否等于e i N ∑。
①在装置中某一单元以串联的形式被重复使用,则用r N 以区别于一个这种单元于其他
种单元的联结情况,每一个重复单元增加一个变量。
②各个单元是依靠单元之间的物流而联结成一个装置,因此必须从总变量中减去那些多余的相互关联的物流变量数,或者是每一单元间物流附加(C+2)个等式。
)2(+-+∑-∑=∴C n N N N N r e c e v u i
n :单元间物流的数目。
)2()2(+-+∑+∑=+-+∑=C n N N N C n N N N r e a e x r e i u i
因为装置的u x N 固定,是指进入该装置的各进料物流(而不是装置内各单元的进料
物流)的变量数以及装置中不同压力的等级数,因此它应比e x N ∑少)2(+C n 。
)2(+-∑=C n N N e x u x
e a
r u x u a u x u i N N N N N N ∑++=+= e a
r u a N N N ∑+=∴ 如进料板单元可以看成是一个分相器和两个混合器的组合,此时0=r N ,且分相器
和混合器的e a N 均为零,故进料板单元的0=u a N ,侧线采出板是理论板与分配器的组合。
0=r N  ,分配器:1=e a N ,理论板的1,0=∴=u a e a N N 。
由若干(N )理论板串级而成的串级单元是最重要的一种组合单元,1=∴r N ,而理论板的1,0=∴=u a e a N N 。
由N 个绝热操作的简单平衡级串联构成的简单吸收塔,得出:42,52,1++=++==N C N N C N N u x u i u a 。
求精馏塔的设计变量,先将塔划分为各种不同的单元,求出e i N ,再求出e i N ∑,由于进出各单元(联结各单元)共有9股物流,9=∴n ,而整个精馏装置的0=r N 。
)2(+-+∑=∴C n N N N r e i u i
其中:5=u a N 因为除进料级的0=e a N 外,其余均为1,则u a
u i u x N N N -=很易求出。
§3-2多组分简单精馏塔的计算
多次单级分离的串联,简称精馏。精馏是分离液体混合物的单元操作,它利用混合物中各组分的挥发度不同,采用液体多次部分汽化,蒸汽多次部分冷凝等汽液间的传质过程,使汽液相间浓度发生变化,并结合应用回流手段,使各组分分离。
一、多组分精馏过程分析
仅有一股进料且无侧线出料和中间换热设备。
有N块理论板,塔顶为分凝器(或全凝器,即馏
出物D以液体状态采出),塔釜有再沸器,塔板序号从
塔顶向下数,分凝器序号为1,再沸器序号N+1,加
料板序号为n+2,n为精馏段塔板数,F为加料流率,
z为进料组成,C为组分数,p为操作压力,D为馏
F
出物的流率,B为釜底残液流率,R为回流比。
除加料板外,每快板上均有上升汽相流率
V,汽
j
相组成
y,汽相混合物的分子热焓j H,下降的液相流
ji
L,液相组成ji x,液相混合物的分子热焓j h及各块
j
板的温度
T。
j
①关键组分
在设计或操作控制中,有一定分离要求,且在塔
顶、塔釜都有一定数量的组分称为关键组分。它是进
料中按分离要求选取的两个组分,它们对于物系的分离起着控制的作用。
轻关键组分,指在塔釜液中该组分的浓度有严格限制,并在进料液中比该组分轻的组分及该组分的绝大部分应从塔顶采出。
重关键组分,指在塔顶馏出液中该组分的浓度有严格限制,并在进料液中比该组分重的组分及该组分的绝大部分应在塔釜液中采出。
关键组分确定后,还需规定轻重关键组分的回收率(分离度)。回收率指轻(重)关键组分在塔顶(釜)产品中的量占进料量的百分数。

本文发布于:2024-09-22 07:05:10,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/93751.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

上一篇:精馏
标签:变量   单元   设计
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议