苯酚的制备方法

著录项
  • CN201180070215.5
  • 20111215
  • CN103492072A
  • 20140101
  • 埃克森美孚化学专利公司
  • 王坤;R·加西亚;G·奇斯
  • B01J29/08
  • C07C13/28 C07C39/04 C07C49/403 C07C37/08 C07C2/66 C07C45/53 C07C2/74 B01J29/90 C07C409/16 B01J29/08 C07C15/04

  • 美国得克萨斯
  • 美国(US)
  • 20110622 EP11170855.8;20110419 US61/476893
  • 中国国际贸易促进委员会专利商标事务所
  • 杨立芳
  • 20111215 PCT/US2011/065062
  • 20121026 WO/2012/145031
  • 20131018
摘要
描述了苯酚的制备方法,其中让包含氢过氧化环己基苯的原料与包含具有小于的单晶胞尺寸的FAU型硅铝酸盐沸石的裂解催化剂在有效将所述氢过氧化环己基苯的至少一部分转化成苯酚和环己酮的裂解条件下接触。
权利要求

1.苯酚的制备方法,所述方法包括:

(a)让包含氢过氧化环己基苯的原料与包含具有小于 的 单晶胞尺寸的FAU型硅铝酸盐沸石的裂解催化剂在有效将所述氢过氧 化环己基苯的至少一部分转化成苯酚和环己酮的裂解条件下接触。

2.权利要求1的方法,其中所述原料包含多于1wt%的氢过氧 化环己基苯,基于所述原料的总重量。

3.上述权利要求中任一项的方法,其中所述原料包含多于50 wt%的环己基苯,基于所述原料的总重量。

4.权利要求1的方法,其中所述接触步骤(a)中所述氢过氧化环 己基苯的转化率大于30%。

5.上述权利要求中任一项的方法,其中所述FAU型沸石具有小于 或等于 的单晶胞尺寸。

6.权利要求1的方法,其中所述裂解催化剂基本上不含金属。

7.上述权利要求中任一项的方法,其中所述裂解催化剂的至少一 部分包含在固定床中。

8.上述权利要求中任一项的方法,其中所述裂解条件包括大约 20℃-大约200℃的温度和大约100kPa表压至大约2000kPa表压的 压力。

9.上述权利要求中任一项的方法,其中所述接触步骤(a)至少在 串联连接的第一反应器和第二反应器中进行。

10.上述权利要求中任一项的方法,其中所述裂解催化剂具有大 于0.3cc/g的孔隙体积。

11.上述权利要求中任一项的方法,其中将苯酚转化成酚醛树脂、 双酚A、ε-己内酰胺、己二酸或增塑剂中的至少一种。

12.上述权利要求中任一项的方法,其中将环己酮转化成己二酸、 环己酮树脂、环己酮肟、己内酰胺或尼龙中的至少一种。

13.上述权利要求中任一项的方法,其中在第二反应器中的所述 接触步骤(a)的操作期间在第一反应器中使催化剂复原或再生,并且所 述第一反应器和第二反应器并联连接。

14.上述权利要求中任一项的方法,其中所述接触步骤(a)至少部 分地在淤浆反应器中进行。

15.上述权利要求中任一项的方法,其中将所述裂解催化剂的至 少一部分连续地或周期性地在所述接触步骤(a)的下游排出并复原。

16.权利要求15的方法,其中通过用极性溶剂冲洗使裂解催化剂 复原。

17.权利要求16的方法,其中所述极性溶剂是丙酮或环己酮。

18.权利要求15或权利要求16的方法,其中将所述复原的裂解 催化剂的至少一部分送回到所述接触步骤(a)。

19.上述权利要求中任一项的方法,还包括:

(i)让环己基苯与含氧化合物在包含环状酰亚胺的氧化催化剂存 在下在有效制备包含氢过氧化环己基苯和环状酰亚胺催化剂的氧化产 物的氧化条件下接触;和

(ii)将所述包含氢过氧化环己基苯的氧化产物的至少一部分供给 所述接触步骤(a)。

20.权利要求19的方法,其中从供给所述接触步骤(a)的所述氧 化产物中除去环状酰亚胺催化剂的至少一部分。

22.权利要求20的方法,其中从所述氧化产物除去环状酰亚胺催 化剂与所述接触步骤(a)同时地进行。

23.权利要求22的方法,其中使所述环状酰亚胺催化剂的至少一 部分从硅铝酸盐沸石解吸并循环到所述接触步骤(i)。

24.上述权利要求中任一项的方法,其中所述原料包含多于0.5 wt%的极性溶剂,基于所述原料的总重量。

21.权利要求19或权利要求20的方法,其中通过与具有小于 的单晶胞尺寸的FAU型硅铝酸盐沸石选择性吸附从所述氧化 产物除去所述环状酰亚胺催化剂的至少一部分。

25.苯酚的制备方法,所述方法包括:

(a)在加氢烷基化催化剂存在下在有效制备包含环己基苯的加氢 烷基化反应产物的条件下用氢气将苯加氢烷基化;

(b)将所述环己基苯的至少一部分从所述加氢烷基化反应产物中 分离;

(c)让得自所述分离步骤(b)的环己基苯的至少一部分与含氧化 合物在包含环状酰亚胺的氧化催化剂存在下在有效制备包含氢过氧化 环己基苯和环状酰亚胺催化剂的氧化产物的氧化条件下接触;和

(d)让包含所述氢过氧化环己基苯的氧化产物的至少一部分与包 含具有小于 的单晶胞尺寸的FAU型硅铝酸盐沸石的裂解催化 剂在有效将所述氢过氧化环己基苯的至少一部分转化成苯酚和环己酮 的裂解条件下接触。

说明书

苯酚的制备方法

优先权声明

本申请要求于2011年4月19日提交的美国临时申请序列号 61/476,893和于2011年6月22日提交的欧洲申请号11170855.8的 优先权,这些文献的公开内容全文通过参考引入本文。

相关专利申请的交叉引用

本申请涉及于2010年1月25日提交的美国申请序列号 13/143,975(2009EM028)、于2011年6月30日提交的美国临时申请 序列号61/502,985(2011EM102)、于2011年6月30日提交的美国临 时申请序列号61/502,979(2011EM170)、于2011年7月19日提交的 美国临时申请号61/509,258(2011EM194)和国际专利合作条约申请号 ___________________,提交日___________标题为“Method for  Producing Phenol and/or Cyclohexanone”(2011EM359)。

技术领域

本发明涉及苯酚的制备方法。

背景技术

苯酚是化学工业中的重要产品并且可用于例如,酚醛树脂、双酚A、 ε-己内酰胺、己二酸和增塑剂的制备。

目前,用于苯酚制备的最常见路线是经由枯烯的Hock方法。这 是三步方法,其中第一步骤包括用丙烯在酸性催化剂存在下将苯烷基 化而产生枯烯。第二步骤是枯烯的氧化,优选有氧氧化,成为相应的 氢过氧化枯烯。第三步骤是氢过氧化枯烯一般在硫酸催化剂存在下裂 解成等摩尔量的苯酚和丙酮(共产物)。

众所周知,可以通过Hock方法的变型共同生产苯酚和环己酮, 其中氧化环己基苯以得到氢过氧化环己基苯以及使所述氢过氧化物在 酸催化剂存在下分解成所需的苯酚和环己酮。虽然各种方法可获得用 于制备环己基苯,但是优选的路线公开在美国专利号6,037,513中, 所述文献公开了可以通过使苯与氢气在双功能催化剂存在下接触制备 环己基苯,所述双功能催化剂包含MCM-22家族的分子筛和至少一种选 自钯、钌、镍、钴和它们的混合物的氢化金属。所述'513专利还公开 了可以将所得环己基苯氧化成相应的氢过氧化物,然后使所述氢过氧 化物分解成所需苯酚和环己酮共产物。

在基于枯烯的Hock方法中,首先通过在真空下除去未反应的枯 烯将得自枯烯氧化步骤的稀的氢过氧化枯烯浓缩到大于80wt%,然 后将所得浓缩物送到裂解反应器。除了与处理浓缩的氢过氧化物相联 系的危害之外,所述裂解还由于所述反应的快速且高度放热性质而造 成安全关注。此外,大量副产物也可能由浓缩的氧化产物产生。在实 践中,因此,通常用溶剂例如丙酮稀释浓缩的氢过氧化枯烯以更好操 纵反应热和控制副产物形成。例如,美国专利号5,254,751公开了通 过在过量丙酮存在下按非等温的方式使氢过氧化枯烯分解制备苯酚和 丙酮的方法,其中在分解反应器中丙酮与苯酚的摩尔比为大约 1.1:1-1.5:1。

在由环己基苯制备苯酚的过程中,问题是不同的。首先,将环己 基苯氧化成氢过氧化环己基苯比枯烯的氧化难得多并且要求高温和使 用催化剂,例如N-羟基邻苯二甲酰亚胺(NHPI)。结果,环己基苯氧化 流出物也一般处于高温,以致将这种料流冷却回到环境温度将遭受额 外的操作费用。此外,鉴于环己基苯的高沸点,通过蒸发未反应的环 己基苯将氢过氧化环己基苯浓缩是困难的并且可能导致所述氢过氧化 物的不希望的分解。因此,采用氢过氧化环己基苯裂解,原料含有大 约80wt%烃且产物仅含有大约20wt%极性组分,这限制硫酸溶解性 和裂解速率。另外,氢过氧化环己基苯的裂解化学比氢过氧化枯烯的 裂解化学复杂得多,尤其是因为采用氢过氧化环己基苯裂解存在对于 副产物形成的更多路线。此外,环己酮比丙酮更加倾向于酸催化的醇 醛缩合反应,以致显著的产率损失是可能的,除非精密地控制氢过氧 化环己基苯裂解。

对于氢过氧化环己基苯裂解存在使用硫酸的其它缺点:1)硫酸是 腐蚀性的,特别是在水存在下,从而对于反应器构造要求昂贵的材料; 2)硫酸需要在产物分离和蒸馏之前被中和,这要求额外的化学物质例 如酚盐、苛性碱或有机胺;和3)由中和产生的盐要求分离和处置并且 废水需要被处理。因此,存在强的用消除这些缺点的多相裂解催化剂 替代硫酸的推动力。

专利和学术文献充满了在氢过氧化枯烯的裂解中替代硫酸的建 议。例如,美国专利号4,490,565公开了沸石β是氢过氧化枯烯裂解 中有效的硫酸代替物并指示产率、转化率和选择性一般优于通过利用 大孔沸石X和Y制备的那些。在美国专利号4,490,566中,报道了用 中等孔隙尺寸沸石例如ZSM-5有优于大孔沸石X和Y的相似改进。相 对照而言,在标题为"Efficient Cleavage of Cumene Hydroperoxide  over HUSY zeolites:The role of Bronsted activity"(Applied  Catalysis A:General,336(2008)第29-34页,Koltonov等人)的文章 中,报道了氢过氧化枯烯在高(15-40)Si/Al比的HUSY沸石上容易地 经历分解,具有好的苯酚和丙酮选择性和甚至与硫酸相当的效率。尽 管有或可能地由于这些不同的推荐,但是用于氢过氧化枯烯裂解的大 多数工业方法仍沿用硫酸作为催化剂。

没有太多兴趣集中于氢过氧化环己基苯的裂解,但是国际专利公 开号WO2011/001244公开了可以在选自布朗斯台德酸和路易斯酸的各 种均相或多相酸催化剂存在下将氢过氧化环己基苯转化成苯酚和环己 酮。适合的均相催化剂据说包括选自硫酸、磷酸、盐酸和对甲苯磺酸 的质子酸。还公开了固体布朗斯台德酸比如Amberlyst和路易斯酸选 自氯化铁、氯化锌、。此外,适合的多相酸据说包括沸石β、 沸石Y、沸石X、ZSM-5、ZSM-12和丝光沸石。

另外,日本未审专利公开2007-099746公开了环烷基苯氢过氧化 物可以在蒙脱土、二氧化硅-氧化铝、阳离子离子交换树脂和负载在载 体上的磺酸、全氟磺酸和杂多酸存在下高选择性地裂解成苯酚和环烷 酮。相似地,日本未审专利公开2007-099745公开了环烷基苯氢过氧 化物可以在具有0.6nm或更大的孔隙直径的硅铝酸盐沸石,例如沸石 Y和沸石β存在下高选择性地裂解成苯酚和环烷酮。

根据本发明,现已令人惊奇地发现,虽然许多固体酸,包括硅铝 酸盐沸石,对于将氢过氧化环己基苯转化成苯酚和环己酮具有活性, 但是具有小于的单晶胞尺寸的FAU型大孔沸石显示对于这种 反应的高活性和高选择性的独特组合。其它大孔沸石例如β不产生高 选择性。此外,由于它们的高表面积,高二氧化硅FAU沸石潜在地能 够用作吸附剂以除去和回收在之前的氧化步骤中使用的N-羟基邻苯 二甲酰亚胺(NHPI)催化剂。此种NHPI除去甚至可以与氢过氧化环己基 苯裂解步骤同时进行,从而简化总体工艺。

发明内容

发明概述

因此,本发明在一个方面中涉及苯酚的制备方法,所述方法包括:

(a)使包含氢过氧化环己基苯的原料与包含具有小于例 如小于或等于例如小于或等于例如小于或等于 例如小于或等于的单晶胞尺寸的FAU型硅铝酸盐沸 石的裂解催化剂在有效将所述氢过氧化环己基苯的至少一部分转化成 苯酚和环己酮的裂解条件下接触。

适宜地,裂解条件包括大约20℃-大约200℃的温度和大约100 kPa-大约2000kPa的压力。

在一个实施方案中,所述接触步骤(a)至少在串联连接的第一反应 器和第二反应器中进行。适宜地,第一反应器在大约20℃-大约120℃ 的温度和大约100kPa-大约500kPa的压力下运转,第二反应器在大 约40℃-大约180℃的温度和大约100kPa-大约1000kPa的压力下运 转。重时空速可以为大约1-1000h-1

在另一个实施方案中,所述接触步骤(a)在多个并联连接的反应器 中的至少一个中进行。适宜地,在第二反应器中的所述接触步骤(a) 的操作期间将所述裂解催化剂在第一反应器中复原和/或再生。

适宜地,第一反应器和第二反应器是相同或不同的。

在一个实施方案中,所述接触步骤(a)至少部分地在连续搅拌釜式 反应器(CSTR)中进行。适宜地,将所述裂解催化剂连续地或周期性地 在接触步骤(a)的下游排出并再生。通常,将再生的催化剂送回到所述 接触步骤(a)。适宜地,将所述裂解催化剂连续地或周期性地添加到所 述接触步骤(a)中以维持转化率。

在另一个实施方案中,所述接触步骤(a)至少部分地在固定床反应 器中进行。

在一个实施方案中,所述方法还包括:

(i)让环己基苯与含氧化合物在包含环状酰亚胺的氧化催化剂存 在下在有效制备包含氢过氧化环己基苯和环状酰亚胺催化剂的氧化产 物的氧化条件下接触;和

(ii)将所述包含氢过氧化环己基苯的氧化产物的至少一部分供给 所述接触步骤(a)。

适宜地,从供给所述接触步骤(a)的氧化产物中除去环状酰亚胺催 化剂的至少一部分。

适宜地,通过与具有小于的单晶胞尺寸的FAU型硅铝酸 盐沸石选择性吸附从氧化产物除去环状酰亚胺催化剂的至少一部分。 在一个实施方案中,从氧化产物除去环状酰亚胺催化剂与所述接触步 骤(a)同时地进行。适宜地,使环状酰亚胺催化剂的至少一部分从硅铝 酸盐沸石解吸并循环到接触步骤(i)。

在另一个方面中,本发明涉及苯酚的制备方法,所述方法包括:

(a)在加氢烷基化催化剂存在下在有效制备包含环己基苯的加氢 烷基化反应产物的条件下用氢气将苯加氢烷基化;

(b)将环己基苯从所述加氢烷基化反应产物中分离;

(c)让得自分离(b)的环己基苯的至少一部分与含氧化合物在包 含环状酰胺的氧化催化剂存在下在有效制备包含氢过氧化环己基苯和 未反应的环状酰胺催化剂的氧化产物的氧化条件下接触;和

(d)让包含氢过氧化环己基苯的氧化产物的至少一部分与包含具 有小于的单晶胞尺寸的FAU型硅铝酸盐沸石的裂解催化剂在 有效将所述氢过氧化环己基苯的至少一部分转化成苯酚和环己酮的裂 解条件下接触。

发明详述

本文描述了通过在包含FAU型的并具有小于例如小于 或等于例如小于或等于例如小于或等于例如小于或等于的单晶胞尺寸的硅铝酸盐沸石的催化剂存在 下裂解氢过氧化环己基苯而制备苯酚的方法。此种催化剂的使用允许 氢过氧化环己基苯的高转化率(大于95%)并联合对于苯酚和环己酮 的异常高的选择性,而没有当使用均相催化剂,例如硫酸时所固有的 缺点。

在一个优选实施方案中,本发明裂解方法形成为由苯制备苯酚和 环己酮的集成方法的一部分,其中将苯转化成环己基苯,然后将环己 基苯氧化成氢过氧化环己基苯并使所述氢过氧化环己基苯裂解而制备 苯酚和环己酮。因此现将根据这一优选的实施方案描述本发明方法。

环己基苯的制备

在从苯开始的集成方法的初始步骤中,如下制备环己基苯:在具 有烷基化功能的催化剂存在下和在促进以下反应的条件下使苯与环己 烯反应:

环己烯可以作为与苯分离的原料供给反应区,但是通常在提供于 具有烷基化功能的催化剂上的氢化组分存在下将苯选择性氢化而原位 制备。所述双功能催化剂因此在本文称作加氢烷基化催化剂并且加氢 烷基化反应总体如下进行以制备环己基苯(CHB):

任何可商购的苯原料可以用于加氢烷基化步骤,但是优选地,苯 具有至少99wt%的纯度水平。类似地,虽然氢源不是决定性的,但 是一般希望氢气是至少99wt%纯的。

适宜地,加氢烷基化步骤的总原料含有少于1000ppm,例如少于 500ppm,例如少于100ppm水。另外,所述总原料通常含有少于100 ppm,例如少于30ppm,例如少于3ppm硫和少于10ppm,例如少于 1ppm,例如少于0.1ppm氮。

可以将氢气在宽的数值范围内供给加氢烷基化步骤,但是通常经 安排以致加氢烷基化原料中氢气与苯的摩尔比在大约0.15:1和大约 15:1,例如大约0.4:1和大约4:1,例如大约0.4:1和大约0.9:1之 间。

除了苯和氢气之外,可以将在加氢烷基化条件下基本上惰性的稀 释剂供给加氢烷基化反应。通常,稀释剂是烃,其中所需环烷基芳族 产物,在这种情况下,环己基苯可溶,例如直链烷属烃、支链烷属烃 和/或环状烷属烃。适合的稀释剂的实例是癸烷和环己烷。环己烷是尤 其有吸引力的稀释剂,因为它是加氢烷基化反应的不希望的副产物。

虽然稀释剂的量不受狭窄限定,但是一般而言,按使得稀释剂与 芳族化合物的重量比是至少1:100;例如至少1:10,但是至多10:1, 通常至多4:1的量添加稀释剂。

加氢烷基化反应可以在宽的反应器构型范围内进行,包括固定 床、淤浆反应器和/或催化蒸馏塔。另外,加氢烷基化反应可以在单一 反应区中或在多个反应区中进行,其中至少将氢气分阶段地引入反应。 适合的反应温度在大约100℃-大约400℃,例如大约125℃-大约250℃ 之间,同时适合的反应压力在大约100kPa-大约7,000kPa,例如大 约500kPa-大约5,000kPa之间。

加氢烷基化反应中采用的催化剂是包含MCM-22家族的分子筛和氢化 金属的双功能催化剂。本文所使用的术语"MCM-22家族材料"(或"MCM-22 家族的材料"或"MCM-22家族的分子筛")包括以下物质中的一种或多种:

·由普通的第一度结晶构造单元(building block)晶胞制成的分 子筛,所述晶胞具有MWW骨架拓扑结构。(晶胞是原子的空间排列,所 述空间排列如果以三维空间平铺其描述晶体结构。所述晶体结构论述 于“Atlas of Zeolite Framework Types”,第五版,2001,所述文 献的整个内容引入作为参考);

·由普通的第二度构造单元制成的分子筛,此种MWW骨架拓扑结 构晶胞的2-维平铺,形成“一个晶胞厚度的单层”,优选一个c-晶胞 厚度;

·由普通的第二度构造单元制成的分子筛,是“一个或多于一个 晶胞厚度的层”,其中多于一个晶胞厚度的层由将一个晶胞厚度的至 少两个单层堆叠、填充或结合制成。此种第二度构造单元的堆叠可以 按规则的方式,不规则的方式,随机方式或其任何组合;和

·通过具有MWW骨架拓扑结构的晶胞的任何规则或随机的2-维或 3-维组合制造的分子筛。

MCM-22家族的分子筛一般具有在12.4±0.25,6.9±0.15,3.57 ±0.07和3.42±0.07埃处包括d间距最大值的X射线衍射图案。通过 使用铜的K-α双峰(doublet)作为入射射线以及装有闪烁计数器和关联 计算机作为收集系统的衍射仪的标准技术,得到用于表征材料的X射线 衍射数据。MCM-22家族的分子筛包括MCM-22(在美国专利号4,954,325 中进行了描述)、PSH-3(在美国专利号4,439,409中进行了描述)、 SSZ-25(在美国专利号4,826,667中进行了描述)、ERB-1(在欧洲专利号 0293032中进行了描述)、ITQ-1(在美国专利号6,077,498中进行了描 述)、ITQ-2(在国际专利公开号WO97/17290中进行了描述)、MCM-36(在 美国专利号5,250,277中进行了描述)、MCM-49(在美国专利号 5,236,575中进行了描述)、MCM-56(在美国专利号5,362,697中进行了 描述)、UZM-8(在美国专利号6,756,030中进行了描述)和它们的混合物。 优选地,分子筛选自(a)MCM-49;(b)MCM-56和(c)MCM-49和MCM-56的 同种型(isotype),例如ITQ-2。

任何已知的氢化金属可以在加氢烷基化催化剂中使用,但是适合 的金属包括钯、钌、镍、锌、锡和钴,其中钯是尤其有利的。一般而 言,催化剂中存在的氢化金属的量占所述催化剂的大约0.05-大约10 wt%,例如大约0.1-大约5wt%。在一个实施方案中,当MCM-22家 族分子筛是硅铝酸盐时,存在的氢化金属的量使得所述分子筛中的铝 与所述氢化金属的摩尔比是大约1.5-大约1500,例如大约75-大约 750,例如大约100-大约300。

氢化金属可以通过例如,浸渍或离子交换直接地负载在MCM-22 家族分子筛上。然而,在一个更优选的实施方案中,将氢化金属的至 少50wt%,例如至少75wt%,和一般基本上将全部氢化金属负载在 与分子筛分离但是与分子筛复合的无机氧化物上。具体来说,发现, 通过将氢化金属负载在无机氧化物上,与其中将氢化金属负载在分子 筛上的等同催化剂相比较,催化剂的活性及其对环己基苯和二环己基 苯的选择性得到提高。

此种复合加氢烷基化催化剂中采用的无机氧化物不受狭窄地限 定,只要它在加氢烷基化反应条件下稳定且惰性。适合的无机氧化物 包括元素周期表第2、4、13和14族元素的氧化物,例如氧化铝、氧 化钛和/或氧化锆。本文所使用的元素周期表各族的编号方案按照 Chemical and Engineering News,63(5),27(1985)中公开那样。

在将含金属的无机氧化物与分子筛复合之前,将氢化金属沉积在 无机氧化物上,适宜地通过浸渍沉积。通常,通过共造粒(其中在高压 (一般大约350kPa-大约350,000kPa)下,将分子筛和含金属的无机氧 化物的混合物形成粒料)或通过共挤出(其中推动所述分子筛和含金属 的无机氧化物的淤浆,任选连同单独的粘结剂一起经过模头)制备催化 剂复合材料。如果有必要的话,随后可以将附加的氢化金属沉积在所 得催化剂复合材料上。

适合的粘结剂材料包括合成的或天然存在的物质以及无机材料例 如粘土、二氧化硅和/或金属氧化物。后者可以是天然存在的或呈包括 二氧化硅和金属氧化物的混合物的胶凝状沉淀或凝胶形式。可以用作粘 结剂的天然存在的粘土包括蒙脱土和高岭土家族的那些,所述家族包括 subbentonites,和通常称为Dixie、McNamee、Georgia和Florida粘 土的高岭土或其中主要矿物成分是埃洛石、高岭石、地开石、珍珠陶土 或蠕陶土的其它那些。此类粘土可以按原始开采时的原状态使用或最初 经历煅烧、酸处理或化学改性。适合的金属氧化物粘结剂包括二氧化硅、 氧化铝、氧化锆、氧化钛、二氧化硅-氧化铝、二氧化硅-氧化镁、二氧 化硅-氧化锆、二氧化硅-氧化钍、二氧化硅-氧化铍、二氧化硅-氧化钛 以及三元组合物例如二氧化硅-氧化铝-氧化钍、二氧化硅-氧化铝-氧化 锆、二氧化硅-氧化铝-氧化镁和二氧化硅-氧化镁-氧化锆。

虽然使用由本文描述的方法活化的MCM-22家族沸石催化剂的加 氢烷基化反应对环己基苯是高度选择性的,但是所述加氢烷基化反应 的流出物还将不可避免地含有一定量的二环己基苯副产物。依赖于这 种二环己基苯的量,(a)用附加的苯将所述二环己基苯烷基转移或(b) 将所述二环己基苯脱烷基化以使所需单烷基化类物质的产生最大化可 能是合乎需要的。

用附加的苯的烷基转移通常在与加氢烷基化反应器分离的烷基 转移反应器中在适合的烷基转移催化剂例如MCM-22家族的分子筛、沸 石β、MCM-68(参见美国专利号6,014,018)、沸石Y和丝光沸石上进 行。烷基转移反应通常在至少部分液相的条件下进行,所述至少部分 液相的条件合适地包括大约100-大约300℃的温度,大约800kPa-大 约3500kPa的压力,大约1-大约10hr-1基于总原料的重时空速,和 大约1:1-大约5:1的苯/二环己基苯重量比。

脱烷基化或裂化还通常在与加氢烷基化反应器分离的反应器,例如 反应性蒸馏装置中,在大约150℃-大约500℃的温度和15-500 psig(200-3550kPa)的压力下在酸催化剂例如硅铝酸盐、铝磷酸盐、硅 铝磷酸盐、无定形二氧化硅-氧化铝、酸性粘土、混合金属氧化物(例如 WOx/ZrO2)、磷酸、硫酸化氧化锆和它们的混合物上进行。一般而言,酸 催化剂包括FAU、AEL、AFI和MWW家族的至少一种硅铝酸盐、铝磷酸盐 或硅铝磷酸盐。与烷基转移不同,脱烷基化可以在没有添加的苯的情况 下进行,但是可能合乎需要的是向脱烷基化反应添加苯以减少焦炭形 成。在这种情况下,供给脱烷基化反应的原料中的苯与多烷基化芳族化 合物的重量比通常是0-大约0.9,例如大约0.01-大约0.5。相似地, 虽然脱烷基化反应可以在没有添加的氢气的情况下进行,但是一般将氢 气引入脱烷基化反应器以帮助焦炭还原。适合的氢气添加率使得脱烷基 化反应器的总原料中的氢气与多烷基化芳族化合物的摩尔比为大约 0.01-大约10。

加氢烷基化反应的另一种显著的副产物是环己烷。虽然由于苯和 环己烷的沸点方面的相似性可以通过蒸馏从加氢烷基化反应流出物容 易地除去包含环己烷和未反应的苯的富C6料流,但是富C6料流难以通 过简单蒸馏进一步分离。然而,可以将富C6料流的一些或全部循环到 加氢烷基化反应器以不但提供苯原料的一部分而且提供上述稀释剂的 一部分。

在一些情形下,可能合乎需要的是向脱氢反应区提供所述富C6料流的一些,其中使所述富C6料流与脱氢催化剂在足以将所述富C6料流部分中的环己烷的至少一部分转化成苯的脱氢条件下接触,同样 可以将所述苯循环到加氢烷基化反应。脱氢催化剂一般包含(a)载体; (b)氢化-脱氢组分和(c)无机促进剂。适宜地,载体(a)选自二氧化硅、 硅酸盐、硅铝酸盐、氧化锆和碳纳米管,优选包含二氧化硅。适合的 氢化-脱氢组分(b)包含至少一种选自元素周期表第6-10族的金属,例 如铂、钯和它们的化合物和混合物。通常,氢化-脱氢组分按占催化剂 的大约0.1-大约10wt%的量存在于催化剂中。适合的无机促进剂(c) 包含至少一种选自元素周期表第1族的金属或其化合物,例如钾化合 物。通常,所述促进剂按占催化剂的大约0.1-大约5wt%的量存在于 所述催化剂中。适合的脱氢条件包括大约250℃-大约500℃的温度, 大约大气压至大约14.5-500psig(100kPa-3550kPa)的压力,大约 0.2-50hr-1的重时空速和大约0-大约20的氢气与烃原料摩尔比。

加氢烷基化反应的其它不利的杂质是双环己烷(BCH)和甲基环戊基 苯(MCPB)异构体,它们由于沸点方面的相似性而难以通过蒸馏与所需环 己基苯分离。此外,虽然1,2-甲基环戊基苯(2-MCPB),和1,3-甲基环 戊基苯(3-MCPB)在随后的氧化/裂解步骤中容易地转化成苯酚和甲基环 戊酮(它们是有价值的产物),1,1-甲基环戊基苯(1-MCPB)对氧化步骤是 基本上惰性的并因此,如果没有除去,将积聚在C12料流中。相似地, 双环己烷(BCH)可能导致下游的分离问题。因此,可以在从产物中除去 至少1,1-甲基环戊基苯和/或双环己烷的条件下用催化剂处理加氢烷基 化反应产物的至少一部分。催化剂一般是酸催化剂,例如硅铝酸盐沸石, 并特别是八面沸石并且所述处理在大约100℃-大约350℃,例如大约 130℃-大约250℃的温度下进行大约0.1-大约3小时,例如大约0.1- 大约1小时的时间。催化处理据认为将1,1-甲基环戊基苯异构化成可更 容易氧化的1,2-甲基环戊基苯(2-MCPB),和1,3-甲基环戊基苯 (3-MCPB)。双环己烷据认为与加氢烷基化反应产物中存在的苯根据以下 反应式反应而产生环己烷和更多所需环己基苯:

催化处理可以在加氢烷基化反应的直接产物上或在将加氢烷基化 反应产物蒸馏而将C6和/或重质物级分分离后进行。

将得自加氢烷基化反应和除去上述杂质的任何下游反应的环己基 苯产物从反应流出物(一种或多种)中分离并供给下面更详细描述的氧 化反应。

环己基苯氧化

为了将环己基苯转化成苯酚和环己酮,最初将环己基苯氧化成相应 的氢过氧化物。这可以通过使环己基苯与含氧气体,例如空气和各种空 气衍生物接触而完成。例如,可以使用如下的空气:已经被压缩和过滤 以除去颗粒的空气,已经被压缩和冷却以使水冷凝并除去的空气,或已 经通过空气的膜富集、空气的低温分离或其它常规方法而使氧气富集到 大于空气中天然的大约21mol%的空气。

氧化在催化剂存在下进行。适合的氧化催化剂包括美国专利号 6,720,462中描述的N-羟基取代的环状酰亚胺,所述文献为此引入本文 供参考。例如,可以使用N-羟基邻苯二甲酰亚胺(NHPI)、4-氨基-N-羟 基邻苯二甲酰亚胺、3-氨基-N-羟基邻苯二甲酰亚胺、四溴-N-羟基邻苯 二甲酰亚胺、四氯-N-羟基邻苯二甲酰亚胺、N-羟基hetimide、N-羟基 himimide、N-羟基trimellitimide、N-羟基苯-1,2,4-三甲酰亚胺、N,N'- 二羟基(均苯四甲酸二酰亚胺)、N,N'-二羟基(二苯甲酮-3,3',4,4'-四 羧酸二酰亚胺)、N-羟基马来酰亚胺、吡啶-2,3-二甲酰亚胺、N-羟基琥 珀酰亚胺、N-羟基(酒石酸酰亚胺)、N-羟基-5-降冰片烯-2,3-二甲酰亚 胺、外-N-羟基-7-氧杂二环[2.2.1]庚-5-烯-2,3-二甲酰亚胺、N-羟基- 顺式-环己烷-1,2-二甲酰亚胺、N-羟基-顺式-4-环己烯-1,2-二甲酰亚 胺、N-羟基萘二甲酰亚胺钠盐或N-羟基-邻苯二磺酰亚胺。优选地,催 化剂是N-羟基邻苯二甲酰亚胺。另一种适合的催化剂是N,N',N''-三羟 基异氰脲酸。

这些氧化催化剂可以单独使用或与自由基引发剂联用,并可以进一 步用作液相、均相催化剂或可以负载在固体载体上以提供多相催化剂。 通常,按占环己基苯的0.0001wt%-15wt%,例如0.001-5wt%的量 使用N-羟基取代的环状酰亚胺或N,N',N''-三羟基异氰脲酸。

氧化步骤的合适条件包括大约70℃-大约200℃,例如大约90℃- 大约130℃的温度和大约50-10,000kPa的压力。可以添加碱性缓冲剂 以与可能在氧化期间形成的酸性副产物反应。另外,可以引入水相。反 应可以按间歇式或连续流动方式进行。

用于氧化反应的反应器可以是允许将氧气引入环己基苯的任何类型 的反应器,并且可以进一步有效提供氧气和环己基苯的接触以进行氧化反 应。例如,氧化反应器可以包括简单的大开放的容器,所述容器具有用 于含氧料流的分配器入口。在各种实施方案中,氧化反应器可以具有将 其内容物的一部分排出并泵送穿过适合的冷却设备并将冷却的部分送 回到反应器的装置,从而操控氧化反应中产生的热。或者,提供间接冷 却(比方说通过冷却水)的冷却盘管可以在氧化反应器内运转以除去产 生的热。在其它实施方案中,氧化反应器可以包括多个串联反应器,各 自进行氧化反应的一部分,任选地在不同的条件下运转,所述条件经选 择以增强环己基苯或氧气,或两者在每个反应器中的适当转化率范围中 的氧化反应。氧化反应器可以按间歇、半间歇或连续流动方式运转。

通常,环己基苯氧化反应的产物含有至少5wt%,例如至少10wt%, 例如至少15wt%,或至少20wt%环己基-1-苯基-1-氢过氧化物,基于 氧化反应流出物的总重量。一般而言,氧化反应流出物含有至多80wt%, 或至多60wt%,或至多40wt%,或至多30wt%,或至多25wt%的环 己基-1-苯基-1-氢过氧化物,基于氧化反应流出物的总重量。氧化反应流 出物可以进一步包含酰亚胺催化剂和未反应的环己基苯。例如,氧化反应 流出物可以按至少50wt%,或至少60wt%,或至少65wt%,或至少 70wt%,或至少80wt%,或至少90wt%的量包括未反应的环己基苯, 基于氧化反应流出物的总重量。

然后让氧化反应流出物的至少一部分直接地或在经历预先分离 或处理后经历裂解反应。例如,可以让氧化反应流出物的全部或一部 分经历高真空蒸馏以产生富含未反应的环己基苯的产物并留下浓缩所 需环己基-1-苯基-1-氢过氧化物并经历裂解反应的残余物。然而,一 般而言,环己基-1-苯基-1-氢过氧化物的此种浓缩既不是必需的也不 是优选的。另外或或者,可以将氧化流出物的全部或一部分,或真空 蒸馏残余物的全部或一部分冷却以引起未反应的酰亚胺氧化催化剂的 结晶,然后可以通过过滤或通过从用来进行结晶的换热器表面刮削分 离所述未反应的酰亚胺氧化催化剂。可以让减少或不含酰亚胺氧化催 化剂的所得氧化组合物的至少一部分经历裂解反应。

作为另一个实例,可以让氧化流出物的全部或一部分经历水洗, 然后穿过吸附剂,例如3A分子筛,以将水及其它可吸附的化合物分离, 并提供具有减小的水或酰亚胺含量的可以经历裂解反应的氧化组合 物。相似地,氧化流出物的全部或一部分可以经历化学或物理类吸附, 例如在碳酸钠床上方通过以除去酰亚胺氧化催化剂(例如,NHPI)或其 它可吸附的组分,并提供氧化催化剂或其它可吸附的组分含量降低的 可以经历裂解反应的氧化组合物。另一种可能的分离包括让氧化流出 物的全部或一部分与含碱液体,例如碱金属碳酸盐或碳酸氢盐的水溶 液接触,以形成包含酰亚胺氧化催化剂的盐的水相,和酰亚胺氧化催 化剂减少的有机相。通过碱性材料处理分离的实例公开在国际申请号 WO2009/025939中,所述文献的整个内容引入本文供参考。

在另一个实施方案中,可以让氧化流出物的全部或一部分与FAU 型硅铝酸盐沸石接触以通过吸附到所述沸石上减小未反应的酰亚胺催 化剂在流出物中的量。用来除去氧化催化剂的FAU型沸石可以与用在 裂解反应中的FAU型沸石相同,即具有小于,或小于, 或小于,或小于,例如小于的单晶胞尺寸, 并且用来除去氧化催化剂的接触可以在裂解反应之前或与裂解反应同 时进行。可以通过用极性溶剂,例如丙酮或环己酮洗涤使吸附了酰亚 胺的催化剂从FAU型沸石解吸,并通过闪蒸溶剂和/或通过重结晶回 收。然后可以将回收的酰亚胺循环到氧化反应。

氢过氧化物裂解

环己基苯转化成苯酚和环己酮的另一个步骤包括氧化步骤中产 生的环己基-1-苯基-1-氢过氧化物的酸催化的裂解。

本发明裂解反应中使用的酸催化剂包含具有小于24.50埃 例如小于或等于或小于或等于或小于或 等于或小于或等于或甚至小于或等于的 单晶胞尺寸的FAU型沸石。单晶胞尺寸通过ASTM D-3942中所述的X 射线衍射测定。本文所使用的“FAU型沸石”或“FAU型的沸石”是指 具有Atlas of Zeolite Framework Types,Ch.Baerlocher等(2007 年第6版)中所述的FAU型结构的沸石。沸石可以呈未粘结的形式使用 或可以与粘结剂,例如二氧化硅或氧化铝结合,以致总体催化剂(沸石 加上粘结剂)包含大约5wt%-大约95wt%的沸石。

在各种实施方案中,裂解催化剂具有大于0.3cc/g,或大于0.4 cc/g,或大于0.5cc/g的通过氮气(N2)吸附测量的孔隙体积。在各种 实施方案中,裂解催化剂含有小于6wt%,或小于3wt%,或小于1 wt%,或小于0.5wt%的第3-12族金属,包括镧系元素,基于催化 剂的重量。

使用FAU型沸石催化剂的裂解反应可以具有大于30%,或大于 50%,或大于70%,或大于90%,或大于95%,或大于99%,或甚 至100%的氢过氧化环己基苯转化率。苯酚选择性可以大于60%,或 大于70%,或大于90%,或大于95%。环己酮选择性可以大于27%, 或大于50%,或大于70%,或大于80%,或大于85%,或大于90%。 本文所使用的“氢过氧化环己基苯转化率”是指转化成任何产物的氢 过氧化环己基苯的量。“苯酚选择性”涉及基于转化的氢过氧化环己 基苯的量的理论苯酚选择性。“环己酮选择性”涉及基于转化的氢过 氧化环己基苯的量的理论环己酮选择性。

在各种实施方案中,使用具有小于或等于的单晶胞尺寸 的FAU型沸石催化剂进行裂解反应,并且所述反应具有大于30%的氢 过氧化环己基苯转化率,大于60%的苯酚选择性和大于27%的环己酮 选择性。

在各种实施方案中,使用具有小于或等于的单晶胞尺寸 的FAU型沸石催化剂进行裂解反应并且所述反应具有等于或大于98% 的氢过氧化环己基苯转化率,等于或大于93%的苯酚选择性和等于或 大于87%的环己酮选择性。

一般而言,裂解反应在包括大约20℃-大约200℃,例如大约40℃ -大约120℃的温度和大约100kPa表压至大约2000kPa表压,例如 大约100kPa表压至大约1000kPa表压的压力的条件下进行,以致裂 解反应混合物在裂解反应期间完全或主要在液相中。重时空速基于总 原料可以为大约1hr-1至大约1000hr-1,优选1hr-1至大约500hr-1, 更优选大约1hr-1至300hr-1

裂解反应可以在各种反应器构造中和在单个反应器或多个反应 器中进行。例如,反应可以至少在串联连接的第一反应器和第二反应 器中进行,其中第一反应器在大约20℃-大约120℃的温度和大约100 kPa表压至大约500kPa表压的压力下运转,第二反应器在大约40℃- 大约180℃的温度和大约100kPa表压至大约1000kPa表压的压力下 运转。第一和第二反应器可以相同或不同。

在一个实施方案中,在淤浆反应器,例如搅拌釜、泵循环环管或 其它适合的构造中进行裂解反应。在一个实施方案中,在连续搅拌釜 式反应器(CSTR)中进行裂解反应的至少一部分,其中催化剂在裂解反 应介质中制浆。通常,按占裂解反应介质大约50wppm-大约20,000 wppm的量添加催化剂。这种配置的优点包括容易热处理和添加/排出 催化剂的灵活性以维持当催化剂钝化时的转化率。如果用含酰亚胺催 化剂的氧化产物进行过氧化物裂解,则所述酰亚胺催化剂将吸附在催 化剂上,而抑制其性能。可以如下除去或回收吸附在催化剂上的酰亚 胺催化剂:从裂解反应器回收负载酰亚胺的催化剂并用极性溶剂例如 丙酮或环己酮洗涤这种废催化剂以恢复其裂解活性和酰亚胺吸附能力 (催化剂的复原)。还可以通过在空气中烧掉焦炭使钝化的催化剂再生。 如果催化剂还用于酰亚胺催化剂的回收,则这种空气再生有利地在回 收吸附的催化剂后进行。在淤浆裂解方法中,可以基于各种程序使催 化剂再生。有利地,将连续地从裂解反应器排出催化剂,在外部循环 环管中再生,然后送回到裂解反应器中。在此种操作状况下,可以经 由再生和通过用新鲜催化剂连续地替代循环催化剂的一部分维持催化 剂活性的稳态。

FAU催化剂也可以在有或者没有首先从裂解原料料流中除去酰亚 胺催化剂的情况下用于固定床活塞流反应器中。如果不除去酰亚胺催 化剂,则FAU床吸附它,而允许其回收并循环到氧化方法。在此种工 艺设计中,可以部署两个或更多个并联的裂解反应器设备组以使过氧 化物原料能够不间断的加工。因此,当在一个反应器设备组中酰亚胺 催化剂将FAU催化剂饱和而使它钝化时,将裂解原料转换到含新鲜或 再生催化剂的另一个反应器设备组。可以通过例如,用极性溶剂例如 丙酮或环己酮冲洗而离线地使所述酰亚胺饱和的催化剂复原。可以将 所述回收的酰亚胺催化剂再用于氧化。然后还可以通过在空气中燃烧 除去催化剂上的焦炭,然后将再生反应器设备组恢复到裂解操作以替 代现在可以离线用于再生的此前运转的反应器设备组。然后可以重复 这种循环直到一个或多个反应器设备组中的催化剂不再能再生到可接 受的水平。在此情况下,可以简单地用新鲜进料替换废的催化剂,然 后将所述设备组恢复到裂解操作。

裂解反应混合物可以含有极性溶剂,例如含少于6个碳的醇,例 如甲醇、乙醇、异丙醇和/或乙二醇;腈,例如乙腈和/或;硝基 甲烷;和含6个碳或更低碳的酮,例如丙酮、甲乙酮、2-或3-戊酮、 环己酮和甲基环戊酮。优选的极性溶剂是在冷却后从裂解产物循环的 苯酚和/或环己酮。一般而言,将极性溶剂添加到裂解反应混合物中使 得极性溶剂与氢过氧化环己基苯在所述混合物中的重量比在大约 1:100-大约100:1,例如大约1:20-大约10:1的范围内,且所述混合 物包含大约10-大约40wt%的氢过氧化环己基苯。发现极性溶剂的添 加不但提高氢过氧化环己基苯在裂解反应中的转化度而且提高转化成 苯酚和环己酮的选择性。虽然没有完全理解所述机理,但是据信极性 溶剂减少了氢过氧化环己基苯通过自由基诱导转化成不希望的产物例 如己酰苯(hexanophenone)和苯基环己醇。

在各种实施方案中,裂解反应混合物按至少50wt%,或至少60 wt%,或至少65wt%,或至少70wt%,或至少80wt%,或至少90 wt%的量包括环己基苯,基于裂解反应混合物的总重量。

裂解反应的主要产物是苯酚和环己酮,其中每一种一般占裂解反 应产物的大约40-大约60wt%,或大约45-大约55wt%,此种wt% 基于裂解反应产物的重量,不计算未反应的环己基苯和酸催化剂在内。

环己酮和苯酚的应用

经由本文公开的方法制备的环己酮可以例如,用作工业溶剂,用 作氧化反应中的活化剂和用于制备己二酸、环己酮树脂、环己酮肟、 己内酰胺和尼龙,例如尼龙6和尼龙6,6。

经由本文公开的方法制备的苯酚可以例如,用于制备酚醛树脂、 双酚A、ε-己内酰胺、己二酸和/或增塑剂。

现将参照以下非限制性实施例和附图更具体地描述本发明。

实施例1:环己基苯的氧化

将631g环己基苯(TCI America,Inc.)添加到1-升四颈玻璃烧 瓶中,向其中添加0.6702g N-羟基邻苯二甲酰亚胺(NHPI)(TCI  America,Inc.)。然后为所述烧瓶配备回流冷凝器、机械搅拌器、气体 喷雾器和温度计。经由气体喷雾器让250cc/min的空气流鼓泡通过所 述液体;在110℃下在搅拌下(560rpm)加热所述内容物6小时。使烧 瓶冷却到室温并回收氧化产物。GC分析指示产物含有17.9wt%的氢 过氧化环己基苯(CHBHP)。

实施例2:NHPI的除去

将300g得自实施例1的氧化产物置于500mL玻璃烧瓶中并与 30g无水碳酸钠(粒状,Aldrich)混合。搅拌所述混合物过夜并且固 体颜变成砖红。然后通过过滤除去固体并让液体进一步滤过无水 硫酸镁的床。获得透明的淡黄液体。GC分析揭示产物含有17.5wt% 的CHBHP。

实施例3:CHBHP(15wt%)使用硫酸催化剂的间歇模式裂解

将CHBHP/CHB(大约15/85wt/wt比)的30g混合物和十二碳烷(用 于质量平衡)加入具有循环温度浴的50mL夹套玻璃反应器。将所述浴 设置到所需的温度并使反应器内容物平衡。一旦温度稳定,就取得GC 样品用于热进料。然后经由微量注射器添加所需量的浓硫酸(96%,三 重蒸馏,Aldrich)。在短暂的反应放热(由反应器内部的温升指示)后, 以一定时间间隔取得1-mL等分试样并用化学计量的二己基胺中和。通 过GC分析产生的样品并将结果概括在表1中。

表1

实施例4:CHBHP(3wt%)使用硫酸催化剂的间歇模式裂解

用CHBHP/CHB/苯酚/环己酮(wt/wt比大约3/81/8/8)的30g混合物和 十二碳烷(用于质量平衡)重复实施例3的方法。结果概括在表2中。

实施例5-11:CHBHP(3wt%)使用固体酸催化剂的间歇模式裂解

在一系列实验中的每一个中,将CHBHP/CHB/苯酚/环己酮(~ 3/81/8/8重量比)的30g混合物和十二碳烷(用于质量平衡)加入具有 循环温度浴的50mL夹套玻璃反应器。将所述浴设置到60℃并使反应 器内容物平衡。一旦温度稳定,就取得GC样品用于热进料。然后将所 需量的不同固体酸催化剂(参见表2)添加到每种混合物中。在短暂的反 应放热(由反应器内部的温升指示)后,以一定时间间隔取得1-mL等分试 样并过滤固体。通过GC分析产生的样品并将结果概括在表2中。

表2

实施例12:CHBHP(3wt%)使用FAU作为固体酸催化剂的间歇模 式裂解

重复实施例5-11的方法,但是使用具有不同单晶胞尺寸的各种 市售FAU型硅铝酸盐沸石作为固体酸催化剂。在每种情况下催化剂加 载量是2wt%并将结果概括在表3中。

表3

命名为CBV的沸石可以从Zeolyst International获得,而命名 为HSZ的沸石可以从Tosoh Corporation获得。

实施例13:CHBHP(15wt%)使用硫酸催化剂的半间歇模式裂解

将CHB/苯酚/环己酮(80/5/5重量比)的10g混合物和十二碳烷 (内标物,10wt%)加入具有循环温度浴的50mL夹套玻璃反应器。将 所述浴设置到所需的温度并使反应器内容物平衡。然后经由微量注射 器添加所需量的浓硫酸(96%,三重蒸馏,Aldrich)。不断地搅拌所述 混合物并使用注射泵将10g CHBHP原料输送到所述反应器。在CHBHP 添加结束时,取得1mL等分试样并用化学计量的二己基胺中和。通过 GC分析产生的样品并将结果概括在表4中。

表4

实施例14:CHBHP(15wt%)使用FAU催化剂的半间歇模式裂解

将CHB/苯酚/环己酮(80/5/5重量比)的10g混合物和十二碳烷 (内标物,10wt%)加入具有循环温度浴的50mL夹套玻璃反应器。将 所述浴设置到60℃并使反应器内容物平衡。然后添加所需量的FAU型 固体酸催化剂。不断地搅拌所述混合物并使用注射泵将10g CHBHP 原料输送到所述反应器。在CHBHP添加结束时,取得1mL等分试样并 过滤固体。通过GC分析产生的样品并将结果概括在表5中。“催化剂 加载量”是指针对每单位量的原料混合物的催化剂量。

表5

实施例15:CHBHP使用八面沸石以固定床操作的裂解

用CHB和十二碳烷(内标物)稀释得自实施例2的CHBHP以制备 包含大约5wt%CHBHP的原料。压制八面沸石催化剂并调整大小到 20-40目尺寸。用石英碎片稀释1g催化剂颗粒到5cc体积并装入3/8” (1cm)直径管式反应器的中心区。首先用流动N2在200℃下干燥所述 催化剂,然后将温度冷却降至60℃。经由由ISCO Industries供应的 泵在100psig(790kPa)的液压下将所述CHBHP原料供给反应器。收 集所述裂解产物并通过GC分析。结果概括在表6中。

实施例16:CHBHP使用八面沸石以固定床操作的裂解

用CHB、苯酚、环己酮和十二碳烷(内标物)稀释得自实施例2 的CHBHP以制备按65/9/9/10/6wt%比包含CHB/苯酚/环己酮/十二碳 烷/CHBHP的原料。压制八面沸石催化剂并调整大小到60-80目尺寸。 用石英碎片稀释0.5g催化剂颗粒到5cc体积并装入3/8”(1cm)直 径管式反应器的中心区。首先用流动N2在200℃下干燥所述催化剂, 然后将温度冷却降至50℃。经由由ISCO Industries供应的泵在100 psig(790kPa)的液压下将所述CHBHP原料供给反应器。收集所述裂解 产物并通过GC分析。结果概括在表6中。

实施例17:CHBHP使用八面沸石以固定床操作的裂解

用CHB、苯酚、环己酮和十二碳烷(内标物)稀释得自实施例2 的CHBHP以得到按65/10/10/10/3wt%比包含CHB/苯酚/环己酮/十 二碳烷/CHBHP的原料。压制八面沸石催化剂并调整大小到60-80目尺 寸尺寸。用石英碎片稀释0.5g催化剂颗粒到5cc体积并装入3/8” (1cm)直径管式反应器的中心区。首先用流动N2在200℃下干燥所述 催化剂,然后将温度冷却降至50℃。经由由ISCO Industries供应的 泵在100psig(790kPa)的液压下将所述CHBHP原料供给反应器。收 集所述裂解产物并通过GC分析。结果概括在表6中。

表6

虽然已经参考特定的实施方案对本发明进行了描述和举例说明, 但是本领域技术人员将意识到本发明适用于不一定在本文中举例说明 的变化方案。因此,则应该仅根据所附权利要求书来确定本发明的真 实范围。

本文发布于:2024-09-24 23:22:34,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/71888.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议