一种高流动性高导热复合相变材料及其制备方法、填充换热器的方法



1.本发明涉及相变储热复合材料技术领域,具体涉及一种高流动性高导热复合相变材料及其制备方法、填充换热器的方法。


背景技术:



2.随着能源供应的不断增加,化石燃料的供应不断减少,这对环境造成了巨大的破坏,科研人员开始寻可再生能源来解决能源危机,然而太阳能、风能等新能源具有不稳定性、周期性和间歇性。目前,储热技术是利用能源的关键技术之一。储热技术主要分为显热储热、相变储热和热化学储热三种。与热化学储热相比,相变储热具有可靠性高,使用条件相对简单的优点;与显热储热相比,相变储热具有更高的储热密度,在相变材料的相变温度有明显的温度平台。相变材料具有种类多、操作简单、成本低等优点。基于相变材料(phase change materials,pcm)的潜热储存技术是通过相变材料从固体到液体的熔化或者从液体到固体的凝固来储存或回收热能。利用相变材料对能量进行储存和利用,可解决能量在时间或空间上分布不均匀的问题,提高能源的利用率。
3.石蜡作为一种有机相变材料,由于其低成本、稳定、高储能密度、无毒和无腐蚀性的优点,被广泛应用在潜热储能材料领域。但是石蜡的导热系数低会影响热量的储存和释放过程,这限制了石蜡作为相变材料在需要热量快速充放领域的应用,因此需要开发高导热复合相变材料。为提高石蜡的导热系数通常是加入具有高导热的颗粒,如加入泡沫金属,将石蜡融化后与泡沫金属直接混合搅拌制成复合相变材料,但是该材料在相变过程中会存在液漏,导致材料的性能下降。膨胀石墨具有比表面积大,导热性能好,对有机相变材料的浸润性好,往往作为导热基体与石蜡复合制备高导热复合相变材料。虽然在石蜡中添加高导热颗粒能够提高复合相变材料的导热系数,但是其他材料的添加会降低材料的相变潜热,降低材料的储热密度。中国专利cn111826127a公开了一种定型复合相变材料,通过添加10~20%的膨胀石墨,在模具中压缩成型制备定型复合相变材料,来提高石蜡复合相变材料的热导率,解决石蜡的液漏问题。但该方案制备的定型材料只能应用在具有规则填充空间的蓄热器中,而对于螺旋管这种不规则的填充空间,复合相变材料与换热器之间存在空隙,不能够紧密接触,导致界面热阻大,降低材料的应用效率。


技术实现要素:



4.本发明的目的在于提供一种高流动性高导热复合相变材料及其制备方法、填充换热器的方法,本发明能够提高复合相变材料的导热性能,同时具有超高的储能密度。本发明制备的复合相变材料具有纯石蜡相变材料在液态时的流动性,能够提高自然对流换热,同时填充各种复杂不规则的填充空间。
5.为了实现上述发明目的,本发明提供以下技术方案:
6.本发明提供了一种高流动性高导热复合相变材料的制备方法,包括以下步骤:
7.将膨胀石墨进行膨化,得到二次膨化后的膨胀石墨;
8.将所述二次膨化后的膨胀石墨和熔融石蜡混合,得到混合料;
9.将所述混合料和石墨片混合,得到高流动性高导热复合相变材料。
10.优选地,所述膨胀石墨的目数为50~200目。
11.优选地,所述膨化的温度为900~1000℃,保温时间为3~4s;所述二次膨化后的膨胀石墨的膨胀率为300~400ml/g。
12.优选地,所述二次膨化后的膨胀石墨和熔融石蜡的质量比为1~5:95~99。
13.优选地,所述二次膨化后的膨胀石墨和熔融石蜡混合的温度比石蜡的相变温度高30~40℃;混合的时间为1~2h。
14.优选地,所述石墨片与膨胀石墨的质量比值大于0.2且小于等于0.8。
15.本发明提供了上述技术方案所述制备方法制备得到的高流动性高导热复合相变材料,所述高流动性高导热复合相变材料包括石蜡、石墨片和二次膨化后的膨胀石墨;所述石蜡和石墨片填充在所述二次膨化后的膨胀石墨的空隙中。
16.优选地,所述高流动性高导热复合相变材料具有流动性,导热系数为2~3w/(m
·
k)。
17.优选地,所述高流动性高导热复合相变材料的相变焓为247~260j/g。
18.本发明提供了采用上述技术方案所述高流动性高导热复合相变材料填充换热器的方法,包括以下步骤:
19.将高流动性高导热复合相变材料在熔融状态下填充至换热器中,得到相变蓄热器。
20.本发明提供了一种高流动性高导热复合相变材料的制备方法,包括以下步骤:将膨胀石墨进行膨化,得到二次膨化后的膨胀石墨;将所述二次膨化后的膨胀石墨和熔融石蜡混合,得到混合料;将所述混合料和石墨片混合,得到高流动性高导热复合相变材料。本发明通过添加膨胀石墨,能够有效的提高复合相变材料的导热性能,同时能够使复合相变材料仍然具有超高的储能密度。本发明通过添加石墨片和膨胀石墨,不仅能提高导热系数,同时石墨片能够起到润滑的作用,使材料在拥有高导热系数的情况下还具有流动性,能够填充各种复杂的填充区域。
附图说明
21.图1为本发明高流动性高导热复合相变材料的制备方法流程图;
22.图2为本发明制备的高流动性高导热复合相变材料填充的螺旋管换热器示意图;
23.图3为本发明实施例1在放热过程中的流动性图;
24.图4为本发明实施例1和对比例1制备的复合相变材料的放热性能对比图。
具体实施方式
25.本发明提供了一种高流动性高导热复合相变材料的制备方法,包括以下步骤:
26.将膨胀石墨进行膨化,得到二次膨化后的膨胀石墨;
27.将所述二次膨化后的膨胀石墨和熔融石蜡混合,得到混合料;
28.将所述混合料和石墨片混合,得到高流动性高导热复合相变材料。
29.在本发明中,若没有特殊说明,采用的制备原料均为本领域技术人员所熟知的市售商品。
30.本发明将膨胀石墨进行膨化,得到二次膨化后的膨胀石墨。在本发明中,所述膨胀石墨的目数优选为50~200目,更优选为100目。在本发明中,所述膨化的温度优选为900~1000℃,保温时间优选为3~4s。在本发明中,所述膨化优选在马弗炉中进行。本发明在所述膨化过程中,还能够对膨胀石墨进行干燥,去除水分。在本发明中,所述二次膨化后的膨胀石墨的膨胀率优选为300~400ml/g,更优选为350ml/g。本发明通过对膨胀石墨进行膨化,能够提高吸附效果和导热性能。
31.得到二次膨化后的膨胀石墨后,本发明将所述二次膨化后的膨胀石墨和熔融石蜡混合,得到混合料。在本发明中,所述二次膨化后的膨胀石墨和熔融石蜡的质量比优选为1~5:95~99,更优选为2~4:96~98。在本发明中,低含量的膨胀石墨添加能够使该复合相变材料保持超高的储能密度。
32.在本发明中,所述二次膨化后的膨胀石墨和熔融石蜡混合的温度优选比石蜡的相变温度高30~40℃;混合的时间优选为1~2h。在本发明中,所述熔融石蜡的制备方法为直接熔融法。在本发明的具体实施例中,所述混合的温度为90~110℃。本发明优选经过4~5次凝固融化过程,使材料混合均匀。
33.得到混合料后,本发明将所述混合料和石墨片混合,得到高流动性高导热复合相变材料。在本发明中,所述石墨片的尺寸优选为5~15mm
×
5~15mm,更优选为10mm
×
10mm;所述石墨片的厚度优选为0.05~0.1mm,更优选为0.07mm。在本发明中,所述石墨片与膨胀石墨的质量比值优选大于0.2且小于等于0.8,更优选为0.5。在本发明中,所述混合料和石墨片混合的温度优选高于石蜡的相变温度30~40℃,时间优选为30~35min,更优选为30min。在本发明中,所述混合优选在搅拌条件下进行,所述搅拌的速率优选为100~200rpm,更优选为200rpm。
34.本发明还提供了上述技术方案所述制备方法制备得到的高流动性高导热复合相变材料。在本发明中,所述高流动性高导热复合相变材料包括石蜡、石墨片和二次膨化后的膨胀石墨;所述石蜡和石墨片填充在所述二次膨化后的膨胀石墨的空隙中。
35.在本发明中,所述高流动性高导热复合相变材料具有流动性,导热系数优选为2~3w/(m
·
k);所述高流动性高导热复合相变材料的相变焓优选为247~260j/g。
36.本发明还提供了采用上述技术方案所述高流动性高导热复合相变材料填充换热器的方法,包括以下步骤:
37.将高流动性高导热复合相变材料在熔融状态下填充至换热器中,得到相变蓄热器。
38.在本发明中,所述换热器优选为螺旋管换热器。
39.在本发明的具体实施例中,将熔融状态的高流动性高导热复合相变材料灌入换热器的缝隙中,填充后将蓄热器放在温度在石蜡相变温度以上的烘箱中将复合相变材料再次融化,使复合相变材料完全填充换热器的缝隙。
40.在本发明中,由于所述高流动性高导热复合相变材料具有流动性,能够依靠自身的流动来填充换热器间的间隙,经过给蓄热器充能后,材料再次融化能够完全填充换热器的空隙,实现紧密结合。
41.下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
42.以下实施例采用的原料:
43.膨胀石墨的目数为100目;
44.石墨片的尺寸为10mm
×
10mm,厚度为0.07mm。
45.实施例1
46.高流动性高导热复合相变材料的制备方法如图1所示,将膨胀石墨置于马弗炉中,在900℃条件下保温3s,进行膨化,得到二次膨化后的膨胀石墨;所述二次膨化后的膨胀石墨的膨胀率为350ml/g;
47.将所述二次膨化后的膨胀石墨和融化的石蜡混合,将混合的材料放入烘箱中,烘箱温度为100℃,在融化状态下搅拌,经过4~5次凝固融化过程,得到混合料;所述二次膨化后的膨胀石墨和石蜡的质量比为3:97;
48.在所述混合料中加入石墨片继续在加热条件下搅拌混合,加热的温度为100℃,其中,石墨片与膨胀石墨的质量比为0.5:1,在200rpm条件下搅拌30min,得到高流动性高导热复合相变材料。
49.本实施例制备的高流动性高导热复合相变材料的导热系数为2.5w/(m
·
k),相变焓为252.2j/g。
50.将所述高流动性高导热复合相变材料融化后倒入螺旋管换热器中,由于复合相变材料具有流动性,能够依靠自身的流动来填充换热器间的间隙,经过对蓄热器充能后,复合相变材料再次融化能够完全填充换热器的空隙,实现紧密结合。
51.实施例2
52.与实施例1的制备方法基本相同,不同之处仅在于,所述二次膨化后的膨胀石墨和石蜡的质量比由“3:97”调整为“5:95”,制备的高流动性高导热复合相变材料的导热系数为2w/(m
·
k),相变焓为247j/g。
53.实施例3
54.与实施例1的制备方法基本相同,不同之处仅在于,所述二次膨化后的膨胀石墨和石蜡的质量比由“3:97”调整为“4:96”,制备的高流动性高导热复合相变材料的导热系数为2.25w/(m
·
k),相变焓为249.6j/g。
55.实施例4
56.与实施例1的制备方法基本相同,不同之处仅在于,所述二次膨化后的膨胀石墨和石蜡的质量比由“3:97”调整为“2:98”,制备的高流动性高导热复合相变材料的导热系数为2.75w/(m
·
k),相变焓为254.8j/g。
57.实施例5
58.与实施例1的制备方法基本相同,不同之处仅在于,所述二次膨化后的膨胀石墨和石蜡的质量比由“3:97”调整为“1:99”,制备的高流动性高导热复合相变材料的导热系数为3w/(m
·
k),相变焓为257.4j/g。
59.对比例1
60.将膨胀石墨和融化的石蜡混合,将混合的材料放入烘箱中,烘箱温度为100℃,在融化状态下搅拌,经过4~5次凝固融化过程,得到低导热无流动材料;所述膨胀石墨和石蜡的质量比为3:97;
61.本对比例制备的低导热无流动材料的导热系数为0.6w/(m
·
k),相变焓为252.2j/g。
62.测试例
63.图2为本发明制备的高流动性高导热复合相变材料填充的螺旋管换热器示意图;图3为本发明实施例1在放热过程中的流动性图;图4为本发明实施例1和对比例1制备的复合相变材料的放热性能对比图。放热性能的测试方法为:在相同测试条件下,将蓄热器温度设置在90℃,以25℃、10g/s的水进入蓄热器进行换热,监控出口的出水温度。
64.由图2~4可以看出,本发明制备的复合相变材料存在明显的流动性,相比于没有流动性的复合相变材料换热,有流动性的材料换热效果更好,因此材料的流动性会对材料起到换热增强的作用。本发明采用小于5%质量分数的膨胀石墨添加量不仅能够提高材料的热导率,还能保持石蜡材料的相变焓大于247j/g。
65.本发明改善了复合相变材料对于复杂环境的应用,提高了换热效率和能量利用率,减少了能耗。
66.以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

技术特征:


1.一种高流动性高导热复合相变材料的制备方法,包括以下步骤:将膨胀石墨进行膨化,得到二次膨化后的膨胀石墨;将所述二次膨化后的膨胀石墨和熔融石蜡混合,得到混合料;将所述混合料和石墨片混合,得到高流动性高导热复合相变材料。2.根据权利要求1所述的制备方法,其特征在于,所述膨胀石墨的目数为50~200目。3.根据权利要求1所述的制备方法,其特征在于,所述膨化的温度为900~1000℃,保温时间为3~4s;所述二次膨化后的膨胀石墨的膨胀率为300~400ml/g。4.根据权利要求1所述的制备方法,其特征在于,所述二次膨化后的膨胀石墨和熔融石蜡的质量比为1~5:95~99。5.根据权利要求1或4所述的制备方法,其特征在于,所述二次膨化后的膨胀石墨和熔融石蜡混合的温度比石蜡的相变温度高30~40℃;混合的时间为1~2h。6.根据权利要求1所述的制备方法,其特征在于,所述石墨片与膨胀石墨的质量比值大于0.2且小于等于0.8。7.权利要求1~6任一项所述制备方法制备得到的高流动性高导热复合相变材料,所述高流动性高导热复合相变材料包括石蜡、石墨片和二次膨化后的膨胀石墨;所述石蜡和石墨片填充在所述二次膨化后的膨胀石墨的空隙中。8.根据权利要求7所述的高流动性高导热复合相变材料,其特征在于,所述高流动性高导热复合相变材料具有流动性,导热系数为2~3w/(m
·
k)。9.根据权利要求7所述的高流动性高导热复合相变材料,其特征在于,所述高流动性高导热复合相变材料的相变焓为247~260j/g。10.采用权利要求7~9任一项所述高流动性高导热复合相变材料填充换热器的方法,包括以下步骤:将高流动性高导热复合相变材料在熔融状态下填充至换热器中,得到相变蓄热器。

技术总结


本发明提供了一种高流动性高导热复合相变材料及其制备方法、填充换热器的方法,涉及相变储热复合材料技术领域。本发明提供的高流动性高导热复合相变材料的制备方法,包括以下步骤:将膨胀石墨进行膨化,得到二次膨化后的膨胀石墨;将所述二次膨化后的膨胀石墨和熔融石蜡混合,得到混合料;将所述混合料和石墨片混合,得到高流动性高导热复合相变材料。本发明通过添加膨胀石墨,能够有效的提高复合相变材料的导热性能,同时能够使复合相变材料仍然具有超高的储能密度。本发明通过添加石墨片和膨胀石墨,不仅能提高导热系数,同时石墨片能够起到润滑的作用,使材料在拥有高导热系数的情况下还具有流动性,能够填充各种复杂的填充区域。区域。区域。


技术研发人员:

凌子夜 曾镇 方晓明 张正国

受保护的技术使用者:

华南理工大学

技术研发日:

2022.06.24

技术公布日:

2022/9/8

本文发布于:2024-09-23 01:29:07,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/5007.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:石墨   所述   材料   石蜡
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议