一种聚酰亚胺基复合气凝胶材料的制备方法、产品及应用



1.本发明涉及生物组织工程技术领域,特别是涉及一种聚酰亚胺基复合气凝胶材料的制备方法、产品及应用。


背景技术:



2.骨骼是一种十分复杂、分层的动态组织,尽管有显著的修复能力,但超过临界尺寸,其修复能力会失去,因此需要临床干预。作为人体组织结构的支撑体,骨骼的作用不可或缺,人体正常的活动离不开骨骼的参与。骨移植被认为是继血液和肾脏之后最常见的组织移植手术之一。据统计,全球每年有大量的人出现骨损伤及其并发症类疾病,为了这些疾病,不同的骨移植物正在被利用,包括自体移植物、同种异体移植物和合成移植物。同种异体移植物存在异体排斥反应和疾病传播,尽管自体骨移植克服了异体移植物的缺点,但存在其他问题也无法忽视,比如供体部位疼痛、出血、感染和神经损伤,肌肉无力和手术并发症等。此外,自体移植需要侵入性骨采集,供体部位发病率高,手术过程痛苦。据估计,骨移植物后期医疗保健每年几乎需要耗费1000亿美元。为了寻骨缺损及其相关并发症的替代疗法,骨组织工程越来越受欢迎,寻一种造价低廉、可大批量生产、骨传导效果良好的生物材料来日益增长的基数庞大的骨损伤患者是一件十分急迫的事。
3.气凝胶是指通过溶胶凝胶法,再经过一定的干燥方式,使得气体取代凝胶中的液相而形成的一种多孔固态材料。气凝胶材料具有许多卓越的物理特性,比如极低的密度、高孔隙率及比表面积,被誉为世界上最轻的固态材料。松质骨具有多孔结构(孔隙率40-90%),由矿化有机基质的连接网络构成。因此,支架设计中的多孔结构是有效骨组织工程的主要要求。目前,气凝胶材料作为成骨材料已得到大量研究。气凝胶是一类特殊的纳米多孔材料,具有高表面积的开孔结构,被认为是用于药物递送和组织工程支架的有前途的载体。与其他骨修复支架相比,气凝胶还可以提供具有更大比表面积和更低密度的网状结构,并且与水凝胶相比可以更好地维持组织愈合空间。大量研究表明,单一的气凝胶不能同时具有多种功能。一般来说,它需要通过掺杂其他物质进行改性,以获得不同的性能。同时,现有的气凝胶材料存在以下技术问题:缺乏微米级孔隙率、较差的机械强度,如何克服上述技术问题,实现气凝胶介导的骨组织工程的真正突破具有重要意义。


技术实现要素:



4.本发明的目的是提供一种聚酰亚胺基复合气凝胶材料的制备方法、产品及应用,以解决上述现有技术存在的问题,使气凝胶材料具备高孔隙率、高机械强度的同时,还具备良好的成骨活性和生物相容性。
5.为实现上述目的,本发明提供了如下方案:
6.本发明技术方案之一,一种聚酰亚胺基复合材料,按质量份数计,所述聚酰亚胺基复合材料由如下组分组成:聚酰亚胺80-100份、聚醚醚酮0-12份、羟基磷灰石类生物相容剂0-15份、抗菌剂0-3份;
7.其中,聚醚醚酮、羟基磷灰石类生物相容剂与抗菌剂不同时为0。
8.进一步地,所述羟基磷灰石类生物相容剂选自羟基磷灰石、氧化铝复合羟基磷灰石、海藻酸钙复合纳米羟基磷灰石中的一种或多种;所述抗菌剂选自纳米氧化镁、纳米氧化锌、纳米氧化铜、纳米氧化钛、纳米氧化银中的一种或多种。
9.本发明技术方案之二,上述的聚酰亚胺基复合材料的制备方法,包括以下步骤:
10.向聚酰胺酸铵盐溶液中加入聚醚醚酮、羟基磷灰石类生物相容剂和抗菌剂混合均匀后,沉淀析出聚合物,将所述聚合物进行干燥处理得到所述聚酰亚胺基复合材料。
11.进一步地,所述聚酰胺酸铵盐溶液的制备方法包括以下步骤:
12.将二酐与二胺在溶剂中反应得到聚酰胺酸溶液,将所述聚酰胺酸溶液与三乙胺混合制得聚酰胺酸铵盐溶液。
13.进一步地,所述二胺与二酐的摩尔比为1:1-1.1;所述二酐包括均苯四甲酸二酐、4,4'-氧双邻苯二甲酸酐、3,3',4,4'-二苯甲酮四甲酸二酐和联苯四甲酸二酐中的一种或多种;所述二胺包括4,4'-二氨基二苯醚、3,4'-二氨基二苯醚、十八烷基胺和对苯二胺中的一种或多种;所述溶剂包括丙酮、四氢呋喃、吡啶、乙醇、、二甲基亚砜、n,n-二甲基乙酰胺、n,n-二甲基甲酰胺和n-甲基吡咯烷酮中的一种或多种;所述三乙胺与二酐的摩尔比为2:1。
14.本发明技术方案之三,上述的聚酰亚胺基复合材料在制备聚酰亚胺基复合气凝胶中的应用。
15.本发明技术方案之四,一种聚酰亚胺基复合气凝胶的制备方法,包括以下步骤:
16.将上述的聚酰亚胺基复合材料加入到水中溶解得到复合水凝胶,真空冻干后进行热酰亚胺化处理,得到所述聚酰亚胺基复合气凝胶。
17.进一步地,所述聚酰亚胺基复合材料与水的质量比为1:6-10;所述热酰亚胺化处理具体为:依次进行100-150℃热处理0.5-1h、150-200℃热处理1-1.5h、200-250℃热处理1-1.5h、250-320℃热处理0.5-1h。
18.本发明技术方案之五,利用上述的制备方法制备得到的聚酰亚胺基复合气凝胶。
19.本发明技术方案之六,上述的聚酰亚胺基复合气凝胶在制备抗菌敷料、药物传递载体、细胞生长载体以及骨植入材料中的应用。
20.本发明技术构思:
21.聚酰亚胺是植入材料的理想基材,它是一种坚固的高性能聚合物,具有生物惰性和生物相容性,但不可生物降解。此外,用作植入材料的聚酰亚胺在几个月内表现出长期稳定性。作为ndp(不可降解聚合物),聚酰亚胺(pi)是一种高性能塑料,具有出的机械性能、耐化学性、耐辐射性和柔韧性。聚酰亚胺气凝胶的出现改变了传统二氧化硅气凝胶易碎、力学性能差的缺点,改变了聚酰胺气凝胶耐热性差的缺点。然而,作为气凝胶材料,聚酰亚胺气凝胶存在机械性能不足的缺点。聚醚醚酮,一种半结晶聚合物,其结晶度约为30-35%,玻璃化转变温度为143℃。在本发明中,聚醚醚酮作为掺杂剂,聚酰亚胺气凝胶材料的机械性能得到改善而且形成了更多细小的微孔,细胞更容易黏附和生长(骨传导效果良好),此外聚醚醚酮和羟基磷灰石结合可明显增强气凝胶的生物相容性和成骨性,聚醚醚酮与镁结合也可明显增强其生物相容性和抗菌性,与此同时,镁金属具备优异的生物活性及可降解性,因而其降解产生的mg
2+
可在体内被人体吸收,镁植入物降解释放的mg
2+
具有成骨和血管生
成能力,其碱性降解环境则赋予其抗菌性。本发明拓宽了聚酰亚胺基复合气凝胶材料的使用范围,使其可以应用于人体内和体外,作为抗菌敷料、药物传递载体、细胞生长载体、骨植入材料等等。
22.本发明公开了以下技术效果:
23.(1)作为聚酰亚胺基气凝胶,耐高温、耐辐射、耐腐蚀是其作为高温可灭菌骨组织植入材料的优势。体外生物学评价表明,随着聚醚醚酮(peek)的加入,其体外生物相容性逐渐增强,体外成骨矿化能力逐渐增强。作为气凝胶材料,它具有孔隙率高、密度低、弹性模量高、比表面积高等特点,与其他材料相比具有无可比拟的优越性。peek作为改性物质添加,气凝胶在改性后含有更细的微孔,peek增加了气凝胶中官能团的含量,这可能是孔径逐渐减小的原因。羟基磷灰石(hap)是人类骨骼和牙齿的主要无机成分,具有优良的生物相容性、生物活性和骨传导性是重要的骨修复材料,聚醚醚酮和羟基磷灰石结合可明显增强聚酰亚胺基气凝胶的生物相容性和成骨性。peek与镁结合也可明显增强其生物相容性和抗菌性,镁金属具备优异的生物活性及可降解性,因而其降解产生的mg
2+
可在体内被人体吸收。mg
2+
的存在使得ph升高,进而对金黄葡萄球菌和大肠杆菌具有一定的抗菌性。由于的mg
2+
的存在,对促进局部的骨组织血管形成有一定作用,对骨再生过程中血管系统的重建具有一定的作用。另外,氧化锌、氧化银、氧化钛、氧化铜也都有抗菌作用,但抗菌机制并不相同,与peek的协同作用相比较镁离子差,根据不同的使用场景可以调整。
24.(2)本发明操作简单,制备方法完善,具有造价低廉、可大批量生产的特点;本发明制备的聚酰亚胺基复合气凝胶孔隙率高,机械强度可调,生物相容性和抗菌性好。同时,本发明方法实用性强,应用在生物组织工程领域,可以实现大规模工业化生产。
25.(3)本发明的制备方法可进一步推广聚酰亚胺基复合气凝胶材料的有效调控,通过改变二胺、二酐和溶剂的种类,聚酰亚胺、聚醚醚酮、羟基磷灰石、纳米氧化镁的份数,包括工艺优化,可以改变气凝胶的孔隙率、孔径大小、机械强度、耐热性、生物相容性及抗菌性能等,使其根据不同领域对材料性能的特殊要求作出相应的变化。
附图说明
26.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
27.图1为实施例1-3制备的聚酰亚胺基复合气凝胶照片;
28.图2为实施例3制备的聚酰亚胺基复合气凝胶的扫描电镜图(放大倍数为7000倍);
29.图3为实施例3制备的聚酰亚胺基复合气凝胶的热分析tg曲线。
具体实施方式
30.现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
31.应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每
个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
32.除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
33.在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本发明说明书和实施例仅是示例性的。
34.关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
35.本发明实施例中所用原材料如无特殊说明均自购买途径获得。
36.实施例1
37.步骤1,水溶性前驱体聚酰胺酸铵盐(paas)的制备:称量oda(4,4'-二氨基二苯醚)9.523g和dmac(二甲基乙酰胺)180g加入干燥的三颈烧瓶中,将上述混合物以350转/分的转速(转速并不会影响最终的技术效果)机械搅拌至oda完全溶解。然后,将pmda(均苯四甲酸二酐)10.477g逐渐加入到上述溶液中(n(oda):n(pmda)=1:1.01)。pmda加入完成后在20℃搅拌2小时(20-40℃搅拌2-5小时均能达到与20℃搅拌2小时相当的技术效果)得到固含量为10wt%的聚酰胺酸(paa)溶液。最后,将9.72gtea(三乙胺)(n(pdma):n(tea)=1:2)加入到上述paa溶液中,在室温下机械搅拌2小时,制得聚酰胺酸铵盐溶液(paas)。
38.步骤2,聚酰亚胺基复合气凝胶的制备:在paas溶液中加入1.74g的聚醚醚酮(peek)粉末(相当于聚酰亚胺与聚醚醚酮质量比为23:2)机械搅拌2小时使得聚醚醚酮充分分散至paas溶液中后,
39.用200ml丙酮沉淀析出paas溶液中的聚合物组分。在真空烘箱中干燥4h后,得到pi复合物粉末,将其溶解在200ml水中,磁力搅拌5小时后,得到聚酰亚胺复合水凝胶,真空冷冻干燥12h,最后在马弗炉中热酰亚胺化,程序升温,工艺参数为150℃
×
0.5h、200℃
×
1h、250℃
×
1h、320℃
×
0.5h。得到聚酰亚胺基复合气凝胶,标记为1#。
40.实施例2
41.与实施例1不同之处仅在于,将步骤2中的1.74g的pee末替换为2.22g的羟基磷灰石(hap)粉末(相当于聚酰亚胺与羟基磷灰石质量比为9:1)。得到聚酰亚胺基复合气凝胶,标记为2#。
42.实施例3
43.与实施例1不同之处仅在于,将步骤2中的1.74g的pee末替换为0.41g的纳米氧化镁(mgo)粉末(相当于聚酰亚胺与纳米氧化镁质量比为49:1)。得到聚酰亚胺基复合气凝胶,标记为3#。
44.实施例4
45.与实施例1不同之处仅在于,省略步骤2中pee末的添加,得到纯的聚酰亚胺气
凝胶。
46.图1为实施例1-3制备的聚酰亚胺基复合气凝胶照片。由图1能够看出实施例1-3虽然配方组成有差异,但主体材料都为聚酰亚胺,掺杂的peek、hap、mgo含量都不高,且颜不深,经过热酰亚胺化后从宏观形貌上面无法看出,都为淡黄疏松多孔结构。
47.图2为实施例3制备的聚酰亚胺基复合气凝胶的扫描电镜图(放大倍数为7000倍)。由图2能够看出气凝胶的微观结构,孔洞很多,占了主体的大部,孔隙率高,密度低,孔的直径主要在250-1000nm,属于微孔结构,有利于生物人工骨材料的应用。
48.图3为实施例3制备的聚酰亚胺基复合气凝胶的热分析tg曲线。由图3能够看出实施例3制备的气凝胶的初始热分解温度在550℃左右,和纯的pi气凝胶初始热分解温度相差无几,原因是实施例3中加了2%的氧化镁,含量较少,所以对气凝胶的初始热分解温度影响不大。
49.效果验证例
50.对实施例1-4制备的聚酰亚胺基复合气凝胶进行性能测试,结果如表1所示,测试方法如下:
51.1、孔隙率测量
52.由于冻干气凝胶结构为大孔结构》50nm,因此本发明采用压汞仪测量聚酰亚胺基复合气凝胶的孔隙率、总孔体积、密度、平均孔径和孔径分布。相关内容为现有技术,在此不进行赘述。
53.2、热稳定性测试
54.气凝胶的热稳定性通过热重分析仪在氮气环境下以10℃/min的速率从50℃开始升温至800℃进行热梯度研究。相关内容为现有技术,在此不进行赘述。
55.3、弹性模量测试
56.采用电子万能试验机进行压缩实验,测试不同样品的弹性模量,根据astm指南,在室温下以0.05mm/min的速率进行机械压缩测试,压缩完成60%时,基于应力-应变曲线的初始斜率计算压缩模量。相关内容为现有技术,在此不进行赘述。
57.4、细胞增殖实验
58.为了验证这种材料的生物相容性,本发明进行了mtt细胞毒性实验,mtt法是一种检测细胞存活和生长的方法,mtt为黄化合物,是一种接受氢离子的染料,可作用于活细胞线粒体中的呼吸链,在琥珀酸脱氢酶和细胞素c的作用下,外源性mt还原为水不溶性的蓝紫结晶甲瓒(formazan)并沉积在细胞中,而死细胞无此功能。在基材上培养细胞1、3天后,检测表面细胞生长数。相关内容为现有技术,在此不进行赘述。
59.5、体外成骨活性实验
60.将不同样品(每组三个平行重复样)使用12孔细胞培养板分别在其表面接种大鼠骨髓间充质干细胞,分别培养至第7和14天,进行检测。具体如下:使用0.5%曲拉通x-100破膜,充分吹打细胞,4℃,1200rpm离心10min,分别将微量显底物加入至适量各样品离心上清液中,分别加入50μl检测缓冲液,37℃避光孵育30min后分别加入100μl反应终止液,测定最终所得溶液在400nm处的吸光度,最后,计算得出各样品活性碱性磷酸酶活性(alp),alp是成骨细胞分化的早期标志物。
61.6、体外抗菌实验
62.为得到不同样品抗菌率,将1
×
106cfu/ml的大肠杆菌和金黄葡萄球菌接种至样品表面,37℃恒温恒湿培养24h,洗脱样品表面细菌,超声收集,pbs溶液稀释所得菌液至合适倍数,在lb固体培养基上涂布,在37℃恒温恒湿培养18h。最后,拍照并使用软件分析样品抗菌率,计算式:抗菌率(%)=(c-t)/c
×
100%,c为pi气凝胶样品平均菌落数,t为各试验组平均菌落数。
63.表1
[0064][0065]
表中的“+”的多少表示生物相容性的相对值,假如纯pi气凝胶的生物相容性数值为“+”,其它实施例“+”的多少则是相比于纯pi气凝胶的数值。
[0066]
实施例5
[0067]
与实施例1不同之处仅在于,步骤2中,在paas溶液中加入1.95g的聚醚醚酮(peek)粉末、2.44g的羟基磷灰石(hap)粉末(相当于聚酰亚胺、聚醚醚酮、羟基磷灰石质量比为41:4:5)。得到聚酰亚胺基复合气凝胶,标记为5#。
[0068]
实施例6
[0069]
与实施例1不同之处仅在于,步骤2中,在paas溶液中加入1.78g的聚醚醚酮(peek)粉末和0.44g的纳米氧化镁(mgo)粉末(相当于聚酰亚胺、聚醚醚酮、纳米氧化镁质量比为45:4:1)。得到聚酰亚胺基复合气凝胶,标记为6#。
[0070]
实施例7
[0071]
与实施例1不同之处仅在于,步骤2中,在paas溶液中加入2.27g的羟基磷灰石(hap)粉末和0.45g的纳米氧化镁(mgo)粉末(相当于聚酰亚胺、羟基磷灰石、纳米氧化镁质量比为44:5:1)。得到聚酰亚胺基复合气凝胶,标记为7#。
[0072]
实施例8
[0073]
与实施例1不同之处仅在于,步骤2中,在paas溶液中加入2g的聚醚醚酮(peek)粉
末、2.5g的羟基磷灰石(hap)粉末和0.5g的纳米氧化镁(mgo)粉末(相当于聚酰亚胺、聚醚醚酮、羟基磷灰石、纳米氧化镁质量比为40:4:5:1)。得到聚酰亚胺基复合气凝胶,标记为8#。
[0074]
对实施例5-8进行与实施例1-4相同的效果验证,结果如表2所示。
[0075]
表2
[0076][0077]
以上实施例主要通过改变聚酰亚胺中聚醚醚酮和/或生物相容促进剂的添加量,探究聚醚醚酮、羟基磷灰石、纳米氧化镁的对聚酰亚胺基气凝胶性能的影响,聚醚醚酮、羟基磷灰石加入可以增加聚酰亚胺基气凝胶的压缩模量,加上气凝胶高孔隙率的特点使聚酰亚胺基复合气凝胶可以替代骨植入材料。纳米氧化镁的加入极大提高了对大肠杆菌和金黄葡萄球菌的抗菌率。聚醚醚酮和羟基磷灰石结合可明显增强聚酰亚胺基气凝胶的生物相容性和成骨性,聚醚醚酮与镁结合也可明显增强聚酰亚胺基气凝胶的生物相容性和抗菌性。所以,本发明可以通过改变聚酰亚胺、聚醚醚酮、羟基磷灰石、纳米氧化镁的份数,来调控气凝胶的孔隙率、孔径大小、机械强度、耐热性、生物相容性及抗菌性能等,根据对材料性能的要求作出相应的变化。
[0078]
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

技术特征:


1.一种聚酰亚胺基复合材料,其特征在于,按质量份数计,所述聚酰亚胺基复合材料由如下组分组成:聚酰亚胺80-100份、聚醚醚酮0-12份、羟基磷灰石类生物相容剂0-15份、抗菌剂0-3份;其中,聚醚醚酮、羟基磷灰石类生物相容剂与抗菌剂不同时为0。2.根据权利要求1所述的聚酰亚胺基复合材料,其特征在于,所述羟基磷灰石类生物相容剂选自羟基磷灰石、氧化铝复合羟基磷灰石、海藻酸钙复合纳米羟基磷灰石中的一种或多种;所述抗菌剂选自纳米氧化镁、纳米氧化锌、纳米氧化铜、纳米氧化钛、纳米氧化银中的一种或多种。3.一种权利要求1所述的聚酰亚胺基复合材料的制备方法,其特征在于,包括以下步骤:向聚酰胺酸铵盐溶液中加入聚醚醚酮、羟基磷灰石类生物相容剂和抗菌剂,混合均匀后,沉淀析出聚合物,将所述聚合物进行干燥处理得到所述聚酰亚胺基复合材料。4.根据权利要求3所述的聚酰亚胺基复合材料的制备方法,其特征在于,所述聚酰胺酸铵盐溶液的制备方法包括以下步骤:将二酐与二胺在溶剂中反应得到聚酰胺酸溶液,将所述聚酰胺酸溶液与三乙胺混合制得聚酰胺酸铵盐溶液。5.根据权利要求4所述的聚酰亚胺基复合材料的制备方法,其特征在于,所述二胺与二酐的摩尔比为1:1-1.1;所述二酐包括均苯四甲酸二酐、4,4'-氧双邻苯二甲酸酐、3,3',4,4'-二苯甲酮四甲酸二酐和联苯四甲酸二酐中的一种或多种;所述二胺包括4,4'-二氨基二苯醚、3,4'-二氨基二苯醚、十八烷基胺和对苯二胺中的一种或多种;所述溶剂包括丙酮、四氢呋喃、吡啶、乙醇、、二甲基亚砜、n,n-二甲基乙酰胺、n,n-二甲基甲酰胺和n-甲基吡咯烷酮中的一种或多种;所述三乙胺与二酐的摩尔比为2:1。6.如权利要求1所述的聚酰亚胺基复合材料在制备聚酰亚胺基复合气凝胶中的应用。7.一种聚酰亚胺基复合气凝胶的制备方法,其特征在于,包括以下步骤:将权利要求1所述的聚酰亚胺基复合材料加入到水中溶解得到复合水凝胶,真空冻干后进行热酰亚胺化处理,得到所述聚酰亚胺基复合气凝胶。8.根据权利要求7所述的聚酰亚胺基复合气凝胶的制备方法,其特征在于,所述聚酰亚胺基复合材料与水的质量比为1:6-10;所述热酰亚胺化处理具体为:依次进行100-150℃热处理0.5-1h、150-200℃热处理1-1.5h、200-250℃热处理1-1.5h、250-320℃热处理0.5-1h。9.根据权利要求7或8所述的制备方法制备得到的聚酰亚胺基复合气凝胶。10.如权利要求9所述的聚酰亚胺基复合气凝胶在制备抗菌敷料、药物传递载体、细胞生长载体以及骨植入材料中的应用。

技术总结


本发明公开了一种聚酰亚胺基复合气凝胶材料的制备方法、产品及应用,涉及生物组织工程技术领域。按质量份数计,聚酰亚胺基复合材料由如下组分组成:聚酰亚胺80-100份、聚醚醚酮0-12份、羟基磷灰石类生物相容剂0-15份、抗菌剂0-3份。通过将聚酰亚胺基复合材料加入到水中溶解得到复合水凝胶,真空冻干后进行热酰亚胺化处理,得到聚酰亚胺基复合气凝胶。利用本发明方法制备的聚酰亚胺基复合气凝胶孔隙率高,比表面积大,机械强度可调,生物相容性和抗菌性好。抗菌性好。抗菌性好。


技术研发人员:

闵永刚 黄万君 李清玲 李达 刘胜东 袁柱峰 王子青 刘屹东

受保护的技术使用者:

广东工业大学

技术研发日:

2022.08.23

技术公布日:

2022/11/18

本文发布于:2024-09-20 17:59:14,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/4618.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:聚酰亚胺   凝胶   磷灰石   所述
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议