机械合金化

机械合金化法与物理粉碎法的区别
机械合金化(Mechanical Alloying,简称MA)是指金属或合金粉末在高能球磨中通过粉末颗粒和磨球之间长时间的激烈的冲击、碰撞,使粉末反复产生冷焊、断裂,导致粉末颗粒中原子扩散,从而获得合金化粉末的一种粉末制备技术。而物理粉碎只是简单的把大的颗粒粉碎为小的颗粒而已,在此期间并没有发生合金化。也就是两种物质各是各的,但合金化是两种物质在原子尺寸上合为了一种合金。二者可以说都是属于机械化学法。
高能球磨中的机械合金化机理
机械合金化(Mechanical alloying 简写MA)是一种材料固态非平衡加工新技术,是在20世纪60年代末由美国的Benjamin首先提出的。1983年,由美国科学家Koch教授率先用机械合金化技术制备出了Ni-Nb系非晶合金,从而在世界范围内掀起了机械合金化研究的高潮。机械合金化就是将欲合金化的元素粉末按一定配比机械混合,在高能球磨机等设备中长时间运转将回转机械能传递给粉末,同时粉末在球磨介质的反复冲撞下,承受冲击、剪切、摩擦和压缩多种力的作用经历反复的挤压冷焊合及粉碎,在粉末原子间相互扩散或进行固态反应形成弥散分布的超细粒子合金粉末的过程。
由于机械合金化的反应过程的复杂性,导致其反应机理也非常复杂。经过几十年的理论探索研究,人们对其机理的认识也渐趋成熟。如今机械合金化作为制备新材料的一种重要方法,日益受到世界材料界的
关注,因此了解它的反应机理至关重要。到目前为止,围绕反应中的某一种主要现象,提出了很多的反应机理。本文主要介绍了几个相对比较成熟的机理以供学习和参考。
1 界面反应为主的反应机理
一般来说,有固相参加的多相化学反应过程是反应剂之间达到原子级结合、克服反应势垒而发生化学反应的过程,其特点是反应剂之间有界面存在。在球磨过程中粉末系统的活性达到足够高时,球与粉末颗粒相互碰撞的瞬间造成的界面温升诱发了此处的化学反应,(如一些材料工作者报导的机械合金化过程中的燃烧合成反应(SHS)现象),反应产物将反应剂分开,反应速度取决于反应剂在产物层内的扩散速度。在球磨过程中,由于粉末颗粒不断发生断裂, 产生了大量的新鲜表面, 并且反应产物被带走, 从而维持反应的连续进行, 直至整个过程的结束。
在文献中作者将Fe-Al 原料按28%Al(原子分数)的比例配料进行高能球磨,通过对粉末的测试分析表明,随着球磨时间的延长,铝的峰值逐渐减弱,当球磨20h后,铝的衍射峰则非常微弱:球磨30h后几乎观察不到铝的衍射峰,并对30h后的粉末进行放热分析,发现放热过程非常平缓,从而说明随着球磨时间的延长,金属铝与铁大部分发生反应形成金属间化合物,这一结果与Cardellini所得到的结果相类似。
粉末经精细球磨到一定程度后,粉末颗粒变得非常细小,并随着表面积的增大而增大了颗粒之间在界
面直接发生反应的几率,因此宏观表现为界面反应为主Fe、Al原始粉末机械合金化形成FeAl 或Fe3Al 主要是这种机理在起作用:球磨过程中,粉末经不断的碰撞产生大量的新鲜表面,当颗粒之间达到一定的原子间距时,彼此相互焊合而发生原子间结合。不断的碰撞产生大量的新鲜结合表面,使得反应不断的进行,最终形成了化合物。有些研究者也发现,Fe、Al粉末在球磨25h后已经开始发生合金化而球磨100h后则完全合金化生成FeAl合金。
2 扩散为主的反应机理
在高能球磨过程中,粉末被反复破碎和焊合,产生大量新鲜的结合界面,形成细化的多层状复合颗粒。继续研磨,由于塑性变形内部缺陷(空位、位错等)增加导致晶粒进一步细
化。此时在其内组元间发生了固态反应扩散,其扩散有三个特点:扩散的温度较低;扩散距离很短;体系能量增高,扩散系数提高。
对于固态晶体物质,宏观的扩散现象是微观迁移导致的结果,为了实现原子的跃迁体系必须达到一个比较高的能量状态,如图1(a)所示,这个额外的能量称为激活能DEa。固态中的原子跃迁一般认为是空位机制,其激活能为空位的形成能DEf和迁移能DEm两者之和见图1(b)。
在高能球磨过程中粉末在较高能量碰撞作用下产生大量的缺陷(空位、位错等),因此,机械合金化
所诱发的固态反应实际上是缺陷能和碰撞能共同作用的结果。所以它不再需要空位的形成能,扩散所要求的总的激活能降低,见图1(c)。
图1 扩散激活能组成示意图
根据Arrhenius定律,扩散系数D与激活能的关系为:
D=D0e(-DEa/RT)(1)
D为扩散常数;DEa为扩散激活能,R为气体常数,T为绝对温度。
对于空位机制代入式(1)
D=D0e[-(DEa+DEm)/RT> (2)
此式表明:对于同一D值减少激活能如减少空位产生激活能,就意味着将会有更多的空位与近邻的扩散原子发生换位,降低了原子的扩散势垒,增大了空位浓度,使得扩散系数增大。因此通过减少DEf有可能使DEm显著降低在高能球磨过程中,降低扩散激活能是提高扩散的主要途径,对于热激活扩散,晶体缺陷很快被退火消除,缺陷在扩散均匀化退火过程中贡献很小。而对于高能球磨,缺陷密度随球磨时间的增加而增加;因而对于高能球磨过程中的扩散均匀化动力学过程缺陷起主要作用。
通过上述理论分析可以得出,室温球磨时,虽然粉末本身的温升不高,但由于产生了大量的缺陷(空位),从而增强了元素的扩散能力,使本来在高温下才能发生的过程在室温下也有可能实现。一些研究者对经不同高能球磨的Al-Ti-C粉料混合物,采用差热分析和X 射线结合方法分析认为,Al-Ti-C粉料经高能球磨以后,使得Al-Ti-C合成反应激活能降低。从而在较低温度下就可得到性能较好的复合材料。也有研究者通过高能球磨的方法用Ti和C粉末在室温下合成了纳米级TiC晶粒。实验结果表明:用机械合金化(MA)法可以在比较短的时间内合成TiC粉末,即,经过高能球磨的粉末由于晶粒的细化,使得反应界面面积大大增加,增大了表面能,并且动态地保持未反应的新鲜界面相接触,再加上碰撞过程中局部的温度升高,使TiC粉末的一些结构参数发生了改变,扩散距离减小,缺陷密度增大,促进了扩散,增大了固态反应的反应动力,从而诱发低温下的自蔓延反应合成。
3 活度控制的金属相变机理
机械合金化过程中的金属相变有别于常见的固态相变,突出表现在其非平衡性和强制性。相变产物常常为过饱和固溶体、非晶等非平衡相,也可能形成非晶金属间化合物等。文献对机械合金化过程中的金属相变作了比较详细的介绍。金属相变理论认为,溶质原子的活度决定组元的化学势的高低。活度可以用下式表示:
a=P/P0 (3)
P和P0分别为溶质在合金中和处于单质状态的蒸汽压,在热力学平衡条件下,0此外,机械合金化过程产生的微小晶粒中的大量位错将使晶界附近出现一个局部畸变区,这相当于使晶界变宽了一些,有可能使溶质原子在晶界中偏聚量增大,从而使溶质的表观固溶度增加。如Fe-Cu系合金机械合金化后,形成了固溶过量Fe的过饱和Cu固溶体。国内一些研究者在Al-Ti合金粉末的高能球磨实验中发现,938K时Ti在Al 中的平衡固溶度仅有0.7%(摩尔
分数),而在球磨过程中,Ti在Al中的固溶度却超过3.6%。而国外研究者通过对Cu-5%Nb 和Cu-10%Nb球磨后发现,Nb全部固溶形成Cu-Nb单相固溶体。在有些合金系中,高能球磨后还会形成非晶和纳米晶过饱和固溶体两相混合物。还有研究表明,几乎所有的合金体系在高能球磨后,都能够形成过饱和固溶体。
4 结论
总之,近年来国内外在MA的理论与应用研究方面取得了很大进展。但是由于MA过程的复杂性,尚无成熟的理论,除了上述理论外还有层扩散理论、多晶约束理论、自助放热反应等理论。因此,对应于不同成分的粉末球磨,其反应机理也是不一样的;同时,相同粉系的机械合金化过程也有可能是几种机理共同作用的结果。
机械合金化
机械合金化是一个通过高能球磨使粉末经受反复的变形、冷焊、破碎,从而达到元素间原子水平合金化的复杂物理化学过程。在球磨初期,反复地挤压变形,经过破碎、焊合、再挤压,形成层状的复合颗粒。
用高能研磨机或球磨机实现固态合金化的过程。
机械合金化基本原理
机械合金化是一个通过高能球磨使粉末经受反复的变形、冷焊、破碎,从而达到元素间原子水平合金化的复杂物理化学过程。在球磨初期,反复地挤压变形,经过破碎、焊合、再挤压,形成层状的复合颗粒。复合颗粒在球磨机械力的不断作用下,产生新生原子面,层状结构不断细化。在机械合金化过程中,层状结构的形成标志着元素间合金化的开始,层片间距的减小缩短了固态原子间的扩散路径,使元素间合金化过程加速。球磨过程中,粉末越硬,回复过程越难进行,球磨所能达到的晶粒度越小。并且,材料硬度越高,位错滑移难以进行,晶格中的位错密度越大,这些又为合金化的进行提供了快扩散通道,使合金化过程进一步加快。球磨过程中,大量的碰撞现象发生在球-粉末球之间,被捕获的粉末在碰撞作用下发生严重的塑性变形,使粉末受到两个碰撞球的“微型”锻造作用。球磨产生的高密度缺陷和纳米界面大大促进了SHS反应的进行,且起了主导作用。反应完成后,继续机械球磨,强制反复进行粉末的冷焊-断裂-冷焊过程,细化粉末,得到纳米晶。
机械合金化的主要特点
机械合金化(MA)技术是制备新型高性能材料的重要途径之一。采用MA工艺制备的材料具有均匀细小的显微组织和弥散的强化相,力学性能往往优于传统工艺制备的同类材料。采用液氮作为冷却剂的低温MA技术制备的Al3Ti/Al合金与传统铝合金或钛合金相比,在高温强度和密度方面(尤其在350℃左右)具有特别的优势。可望成为部分取代传统钛合金的新型航空材料,达到减重或提高发动机推重比的目的。
机械合金化是一种合成细晶合金粉末材料的有效方法。TiAl基合金采用快冷方法无法获得非晶,而采用机械合金化则可以形成非晶。利用机械合金化制得的非晶态TiAl基合金粉末,在其玻璃点温度以上压实时,粉末的流动性非常好,可以得到形状复杂、致密度近理想状态的合金试件。机械合金化工艺采用的原料既可是单质元素粉末,也可是预合金粉。Ti、Al单质混合粉经机械合金化,很容易使Ti、Al组元尺寸细化、形成一种颗粒细小的Ti/Al复合粉;进一步延长球磨时间,则发生合金化或形成非晶。TiAl预合金粉经机械合金化,其晶粒尺寸能显著细化。两种经机械合金化方法处理的粉末,其烧结行为有些差异,但均可烧结成致密度大于96%的TiAl基合金材料。
机械合金化方法制备TiAl基合金粉末的最大特点是易于获得纳米晶组织。如:预合金粉Ti-47.5%Al-3.45%Cr经机械球磨后,晶粒可细化至40~50nm,再经热压和1200℃热处理25h,晶粒尺寸也只长大至1μm。Hiroshi等通过机械球磨制得了Ti-51Al非晶,发现在同一保温
时间下,随热压温度的增加γ晶粒尺寸增加,但经1300℃保温5h,其尺寸仍能保证在50nm以下,且当直径为15nm时,材料硬度达到最高10GPa。Huang等利用机械合金化方法分别制得伴有少量Ti(Al)固溶的TiAl复合组织和颗粒细小的非晶粉,再通过反应热等静压分别获得了等轴γ-TiAl+α2 Ti3Al相和近单相γ-TiAl,并且发现球磨粉末中高含量Nb、Cr等合金元素和间隙元素会导致α/(α+β)转变温度升高。
但是,机械合金化制备的TiAl基合金粉末的固结致密与成形较为困难,因此关于机械合金化制备TiAl基合金块体材料及其力学性能方面的研究报道,目前仍为鲜见。
影响机械合金化的主要因素
机械合金化是一个复杂的过程,因此要获得理想的相和微观结构,就需要优化设计一系列的影响参数。下面列举一些对机械合金化结果有重大影响的
机械合金化- 参数
(1)研磨装置
研磨类型生产机械合金化粉末的研磨装置是多种多样的,如:行星磨、振动磨、搅拌磨等。它们的研磨能量、研磨效率、物料的污染程度以及研磨介质与研磨容器内壁的力的作用各不相同,故对研磨结果起着至关重要的影响。研磨容器的材料及形状对研磨结果有重要影响。在过程中,研磨介质对研磨
容器内壁的撞击和摩擦作用会使研磨容器内壁的部分材料脱落而进入研磨物料中造成污染。常用的研磨容器的材料通常为淬火钢、工具钢、不锈钢、P>K>5或P>内衬淬火钢等。有时为了特殊的目的而选用特殊的材料,例如:研磨物料中含有铜或钛时,为了减少污染而选用铜或钛研磨容器。
此外,研磨容器的形状也很重要,特别是内壁的形状设计,例如,异形腔,就是在磨腔内安装固定滑板和凸块,使得磨腔断面由圆形变为异形,从而提高了介质的的滑动速度并产生了向心加速度,增强了介质间的摩擦作用,而有利于合金化进程。
(2)研磨速度
研磨机的转速越高,就会有越多的能量传递给研磨物料。但是,并不是转速越高越好。这是因为,一方面研磨机转速提高的同时,研磨介质的转速也会提高,当高到一定程度时研磨介质就紧贴于研磨容器内壁,而不能对研磨物料产生任何冲击作用,从而不利于塑性变形和合金化进程。另一方面,转速过高会使研磨系统温升过快,温度过高,有时这是不利的,例如较高的温度可能会导致在过程中需要形成的过饱和固溶体、非晶相或其它亚稳态相的分解(3)研磨时间
研磨时间是影响结果的最重要因素之一。在一定的条件下,随着研磨的进程,合金化程度会越来越高,颗粒尺寸会逐渐减小并最终形成一个稳定的平衡态,即颗粒的冷焊和破碎达到一动态平衡,此时颗粒尺寸不再发生变化。但另一方面,研磨时间越长造成的污染也就越严重。因此,最佳研磨时间要
根据所需的结果,通过试验综合确定。图1-2为球磨过程中TiAl粉末的显微硬度随球磨时间的变化。图1-3为TiAl粉末经过不同时间球磨后的背散射扫描电镜照片,从图上可明显地看出球磨时间对组织的影响。
(4)研磨介质
选择研磨介质时不仅要象研磨容器那样考虑其材料和形状如球状、棒状等,还要考虑其密度以及尺寸的大小和分布等,球磨介质要有适当的密度和尺寸以便对研磨物料产生足够的冲击,这些对最终产物都有着直接的影响,例如研磨Ti-Al混合粉末时,若采用直径为15mm 的磨球,最终可得到固溶体,而若采用直径为25的磨球,在同样的条件下即使研磨更长的时间也得不到Ti-Al 固溶体【20】。
(5)球料比
球料比指的是研磨介质与研磨物料的重量比,通常研磨介质是球状的,故称球料比。试验研究用的球料比在1:1~200:1范围内,大多数情况下为15:1左右。当做小量生产或试验
时,这一比例可高达50:1甚至100:1。
(6)充填率
研磨介质充填率指的是研磨介质的总体积占研磨容器的容积的百分率,研磨物料的充填率指的是研磨物料的松散容积占研磨介质之间空隙的百分率。若充填率过小,则会使生产率低下;若过高,则没有足够的空间使研磨介质和物料充分运动,以至于产生的冲击较小,而不利于合金化进程。一般来说,振动磨中研磨介质充填率在60%-80%之间,物料充填率在100%-130%之间。
(7)气体环境
机械合金化是一个复杂的固相反应过程,球磨氛围、球磨强度、球磨时间等任意一个参数的变化都会影响合金化的过程甚至最终产物。在机械合金化过程中,由于球与球、球与罐之间的撞击,机械能转换成热能,使得球磨罐内的温度升得很高。同时,合金化过程中往往发生粒子的细化,并引入缺陷,自由能升高,很容易与球磨氛围中的氧等发生反应,因此一般机械合金化过程中均以惰性气体,如氩气等为保护气体。球磨气氛不同,会对合金化的反应方式、最终产物以及性质等造成显著影。研磨的气体环境是产生污染的一个重要因素,因此,一般在真空或惰性气体保护下进行。但有时为了特殊的目的,也需要在特殊的气体环境下研磨,例如当需要有相应的氮化物或氢化物生成时,可能会在氮气或氢气环境下进行研磨。(8)过程控制剂
在MA过程中粉末存在着严重的团聚、结块和粘壁现象大大阻碍了MA的进程。为此,常在过程中添加过程控制剂,如硬脂酸、固体石蜡、液体酒精和四氯化碳等,以降低粉末的团聚、粘球、粘壁以及研磨介质与研磨容器内壁的磨损,可以较好地控制粉末的成分和提高出粉率。
(9)研磨温度
无论MA的最终产物是固溶体、金属间化合物、纳米晶、还是非晶相都涉及到扩散问题,而扩散又受到研磨温度的影响,故温度也是MA的一个重要影响因素,例如Ni-50%Zr粉末系统在振动球磨时当在液氮冷却下研磨15h没发现非晶相的形成;而在200oC下研磨则发现粉末物料完全非晶化;室温下研磨时,则实现部分非晶化。
上述各因素并不是相互独立的,例如最佳研磨时间依赖于研磨类型、介质尺寸、研磨温度以及球料比等。
机械合金化合成高熔点合金或金属间化合物时具有如下优点:避开普通冶金方法的高温熔化、凝固过程,在室温下实现合金化,得到均匀的具有精细结构的合金,且产量较高,因而已成为生产常规手段难以制备的合金及新材料的好方法。
机械合金化
用高能研磨机或球磨机实现固态合金化的过程。机械合金化是一个通过高能球磨使粉末经受反复的变形、冷焊、破碎,从而达到元素间原子水平合金化的复杂物理化学过程。
机械合金化
原理
在球磨初期,反复地挤压变形,经过破碎、焊合、再挤压,形成层状的复合颗粒。复合颗粒在球磨机械力的不断作用下,产生新生原子面,层状结构不断细化。在机械合金化过程中,层状结构的形成标志着元素间合金化的开始,层片间距的减小缩短了固态原子间的扩散路径,使元素间合金化过程加速。球磨过程中,粉末越硬,回复过程越难进行,球磨所能达到的晶粒度越小。并且,材料硬度越高,位错滑移难以进行,
晶格中的位错密度越大,这些又为合金化的进行提供了快扩散通道,使合金化过程进一步加快。
过程
球磨过程中,大量的碰撞现象发生在球-粉末球之间,被捕获的粉末在碰撞作用下发生严重的塑性变形,使粉末受到两个碰撞球的“微型”锻造作用。球磨产生的高密度缺陷和纳米界面大大促进了SHS反应的进行,且起了主导作用。反应完成后,继续机械球磨,强制反复进行粉末的冷焊-断裂-冷焊过程,细化粉末,得到纳米晶。机械合金化的机理
目前公认机械合金化的反应机制,主要有以下两种方式:一是通过原子扩散逐渐实现合金化;在球磨过程中粉末颗粒在球磨罐中受到高能球的碰撞、挤压,颗粒发生严重的塑性变形、断裂和冷焊,粉末
被不断细化,新鲜未反应的表面不断地暴露出来, 晶体逐渐被细化形成层状结构,粉末通过新鲜表面而结合在一起如图3[12 ]所示。这显著增加了原子反应的接触面积,缩短了原子的扩散距离,增大了扩散系数。多数合金体系的MA形成过程是受扩散控制的,因为MA使混合粉末在该过程中产生高密度的晶体缺陷和大量扩散偶,在自由能的驱动下,由晶体的自由表面、晶界和晶格上的原子扩散而逐渐形核长,直至耗尽组元粉末,形成合金。如A1—Zn、A1—Cu、A1—Nb 等体系的机械合金化过程就是按照这种方式进行的。二是爆炸反应;粉末球磨一段时间后, 接着在很短的时间内发生合金化反应放出大量的热形成合金,这种机制可称为爆炸反应(或称为高温自蔓延反应SHS、燃烧合成反应或自驱动反应)。Ni50A150粉末的机械合金化、Mo—Si、Ti—C和NiA1/ TiC等合金系中都观察到同样的反应现象。粉末在球磨开始阶段发生变形、断裂和冷焊作用,粉末粒子被不断的细化。能量在粉末中的…沉积‟和接触面的大量增加以及粉末的细化为爆炸反应提供了条件。这可以看成燃烧反应的孕育过程, 在此期间无化合物生成, 但为反应的发生创造了条件。一旦粉末在机械碰撞中产生局部高温, 就可以“点燃”粉末, 反应一旦…点燃‟后,将会放出大量的生成热,这些热量又激活邻近临界状态的粉末发生反应,从而使反应得以继续进行,这种形式可以称为…链式反应‟。
机械合金化的主要特点
机械合金化(MA)技术是制备新型高性能材料的重要途径之一。采用MA工艺制备的材料具有均匀细小的显微组织和弥散的强化相,力学性能往往优于传统工艺制备的同类材料。采用液氮作为冷却剂的低温
MA技术制备的Al3Ti/Al合金与传统铝合金或钛合金相比,在高温强度和密度方面(尤其在350℃左右)具有特别的优势。可望成为部分取代传统钛合金的新型航空材料,达到减重或提高发动机推重比的目的。
采用材料
机械合金化是一种合成细晶合金粉末材料的有效方法。TiAl基合金采用快冷方法无法获得非晶,而采用机械合金化则可以形成非晶。利用机械合金化制得的非晶态TiAl 基合金粉末,在其玻璃点温度以上压实时,粉末的流动性非常好,可以得到形状复杂、致密度近理想状态的合金试件。机械合金化工艺采用的原料既可是单质元素粉末,也可是预合金粉。Ti、Al单质混合粉经机械合金化,很容易使Ti、Al组元尺寸细化、形成一种颗粒细小的Ti/Al复合粉;进一步延长球磨时间,则发生合金化或形成非晶。TiAl 预合金粉经机械合金化,其晶粒尺寸能显著细化。两种经机械合金化方法处理的粉末,其烧结行为有些差异,但均可烧结成致密度大于96%的TiAl基合金材料。

本文发布于:2024-09-20 20:34:33,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/389665.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:合金化   粉末   研磨   机械   反应   过程   扩散   形成
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议