蛋白质电泳

DNA电泳蛋白质电泳有什么区别和联系
还有问题,就是既然驱动力是负电荷,那为什么移动的距离和分子量有关,而不是和所带的电荷大小有关呢?还有为什么蛋白质电泳时垂直的,DNA电泳是水平的呢?
DNA电泳一般使用的都是琼脂糖凝胶电泳,电泳的驱动力靠DNA骨架本身的负电荷。
蛋白质电泳(一般指SDS-PAGE)一般使用的都是聚丙烯酰胺凝胶电泳,电泳的驱动力靠与蛋白质结合的SDS上所携带的负电荷。
所以相同点就是样品都是带负电荷的,从负极向正极移动,移动的距离都和样品的分子量有关。而且这两个电泳体系可以互相交换使用。进行大分子蛋白质电泳时,可以考虑换用琼脂糖凝胶,因为该体系孔径大。相反,如果需要精确到各位数碱基的DNA电泳也可以使用聚丙烯酰胺凝胶系统,因为使用该系统可以将相差一个碱基的两条DNA链分开。
不同点首先是样品不同。这个就不用多说了。其次是结果的观察方法不同。DNA电泳普遍使用EB做染料,在紫外灯下观察;而蛋白电泳使用的考马斯亮蓝染,还需要经过脱步骤,不过观察起来比较简单。还有就是胶体系的差别,DNA电泳通常是一胶跑到底,而蛋
白质电泳则会有分离胶和浓缩胶之区别。
先说这么多,有不明白的你再问好了~
回答补充:
电泳中样品移动的本质确实是样品所携带的电荷。但是,区分这些条带直接可以用分子量而无需使用电荷数,是因为这些样品的电荷/分子量比都是恒定的了。以DNA分子为例,它在电泳中的移动是靠其骨架中磷酸所携带的负电荷来实现的,而这个磷酸分子又是每一个核苷酸中都有的,所以DNA分子所携带的负电荷数是由其核苷酸总数决定的。而且,DNA分子中核苷酸的组成动辄成百上千,在如此大的分子量面前,讨论单个核苷酸之间分子量的差别就显得毫无意义。这样,DNA分子中负电荷的量就可以用DNA的分子量来代替,反过来,DNA的分子量也就可以用DNA分子所携带的电荷来代替(一句话,DNA分子的电荷/分子量比是恒定的)。
这在蛋白电泳中(特别是SDS-PAGE中)是一样的。在SDS-PAGE中,SDS将蛋白质变性成直线分子并紧密包裹于其上,使得其所携带的电荷与蛋白分子量成了一定的比例,剩下的就和核酸电泳一样了。
至于为什么核酸的横着跑,蛋白竖着跑,个人认为最大的问题是蛋白制胶的过程导致的。蛋白制胶由于使用了两种不同的凝胶系统,所以需要一个水平的分界面。这个分界面在配胶的过程中是依靠异丙醇在重力作用下的压力下形成的。所以,一并就竖着跑了~~
聚丙烯酰胺凝胶(polyacrylamide gel)是由单体(monomer)丙烯酰胺(acrylamide,简称Acr)和交联剂(crosslinker)N,N’-甲叉双丙烯酰胺(N,N’-methylenebisacrylamide,简称Bis)在催化剂和加速剂作用下聚合交联而成的三维网状结构的凝胶。用此凝胶为支持物的电泳称为聚丙烯酰胺凝胶电泳(polyacrylamide gel electrophorsis,简称PAGE)。聚丙烯酰胺凝胶用于电泳的支持介质,与其它凝胶相比,聚丙烯酰胺凝胶具有以下优点:
(1)孔径大小与生物大分子具有相似的数量级,具有良好的分子筛效应。根据待分离大分子的相对分子质量,通过改变凝胶浓度及交联剂度来调节凝胶的孔径,使大分子得到较好的分离。
(2)在一定浓度范围内,凝胶透明,有弹性,机械性能好
(3)凝胶是由—C—C—C—C—结合的酰胺类多聚物,侧链上具有不活泼的酰胺基,没有其
它带电基团,所以凝胶性能稳定,电渗作用小,无吸附,化学惰性强。与生物大分子不发生化学反应,电泳过程中不受温度、pH的变化的影响。
(4)具有高分辨率和灵敏度,尤其是在不连续电泳系统中,集浓缩、分子筛和电荷效应为一体,样品不易扩散。并有多种染方法提高电泳条带显的灵敏度,分离蛋白质的灵敏度可达10-6g
(5)单体纯度高,在相同的实验条件下,电泳结果具有很好的重复性。
(6)凝胶杂质少,在很多溶剂中不溶,可适用于少量样品的制备,不致污染样品。
以聚丙烯酰胺凝胶为支持物发展起来的电荷聚丙烯酰胺凝胶电泳、SDS-聚丙烯酰胺凝胶电泳、聚丙烯酰胺梯度凝胶电泳、等电聚焦及双向电泳等电泳技术,不仅能分离、小量制备生物大分子,而且可以用来研究生物大分子的性质如电荷、相对分子质量、等电点以及构象等。
琼脂糖凝胶电泳和聚丙烯酰胺凝胶电泳实验原理 
聚丙烯酰胺凝胶电泳,普遍用于分离蛋白质及较小分子的核酸。琼脂糖凝胶孔径较大适用于分离同工酶及其亚型,大分子核酸等应用较广。琼脂糖和聚丙烯酰胺可以制成各种形状、大小和孔隙度。琼脂糖凝胶分离DNA度大小范围较广,不同浓度琼脂糖凝胶可分离长度从200bp至近50kb的DNA段。琼脂糖通常用水平装置在强度和方向恒定的电场下电泳。聚丙烯酰胺分离小片段DNA(5-500bp)效果较好,其分辩力极高,甚至相差1bp的DNA段就能分开。聚丙烯酰胺凝胶电泳很快,可容纳相对大量的DNA,但制备和操作比琼脂糖凝胶困难。聚丙烯酰胺凝胶采用垂直装置进行电泳。目前,一般实验室多用琼脂糖水平平板凝胶电泳装置进行DNA电泳。 琼脂糖凝胶电泳原理: 
琼脂糖是从琼脂中提纯出来的,主要是由D-半乳糖和3,6脱水L-半乳糖连接而成的一种线性多糖。琼脂糖凝胶的制作是将干的琼脂糖悬浮于缓冲液中,通常使用的浓度是1%-3%,加热煮沸至溶液变为澄清,注入模板后室温下冷却凝聚即成琼脂糖凝胶。琼脂糖主要在DNA制备电泳中作为一种固体支持基质。琼脂糖之间以分子内和分子间氢键形成较为稳定的交联结构,这种交联的结构使琼脂糖凝胶有较好的抗对流性质。琼脂糖凝胶的孔径可以通过琼脂糖的最初浓度来控制,低浓度的琼脂糖形成较大的孔径,而高浓度的琼脂糖形成较小的孔径。尽管琼脂糖本身没有电荷,但一些糖基可能会被羧基、甲氧基特别是硫酸根不同程
度的取代,使得琼脂糖凝胶表面带有一定的电荷,引起电泳过程中发生电渗以及样品和凝胶间的静电相互作用,影响分离效果。 
琼脂糖凝胶可以用于蛋白质和核酸的电泳支持介质,尤其适合于核酸的提纯、分析。如浓度为1%的琼脂糖凝胶的孔径对于蛋白质来说是比较大的,对蛋白质的阻碍作用较小,这时蛋白质分子大小对电泳迁移率的影响相对较小,所以适用于一些忽略蛋白质大小而只根据蛋白质天然电荷来进行分离的电泳技术,如免疫电泳、平板等电聚焦电泳等。琼脂糖也适合于DNA、RNA分子的分离、分析,由于DNA、RNA分子通常较大,所以在分离过程中会存在一定的摩擦阻碍作用,这时分子的大小会对电泳迁移率产生明显影响。例如对于双链DNA,电泳迁移率的大小主要与DNA分子大小有关,而与碱基排列及组成无关。另外,一些低熔点的琼脂糖在62 ℃时熔化,因此其中的样品(如DNA),可以在加热到熔点的水浴中放置一段时间,重新溶解到溶液中而回收。 
由于琼脂糖凝胶的弹性较差,难以从小管中取出,所以一般琼脂糖凝胶不适合于管状电泳,管状电泳通常采用聚丙烯酰胺凝胶。琼脂糖凝胶通常是形成水平式板状凝胶,用于等电聚焦、免疫电泳等蛋白质电泳,以及DNA、RNA的分析。垂直式电泳应用得相对较少。 
目前多用琼脂糖为电泳支持物进行平板电泳,其优点如下: 
(1) 琼脂糖凝胶电泳操作简单,电泳速度快,样品不需事先处理就可以进行电泳。 (2) 琼脂糖凝胶结构均匀,含水量大(约占98%~99%),近似自由电泳,样品扩散较自由电流,对样品吸附极微,因此电泳图谱清晰,分辨率高,重复性好。 (3) 琼脂糖透明无紫外吸收,电泳过程和结果可直接用紫外光灯检测及定量测定。 
(4) 电泳后区带易染,样品极易洗脱,便于定量测定。制成干膜可长期保存。 聚丙烯酰胺凝胶电泳原理: 
聚丙烯酰胺凝胶电泳简称为PAGE(Polyacrylamide gel electrophoresis),是以聚丙烯酰胺凝胶作为支持介质。聚丙烯酰胺凝胶是由单体的丙烯酰胺
(CH2=CHCONH2 Acrylamide)和甲叉双丙烯酰胺(CH2(NHCOHC=CH2)2 N,N'- methylenebisacrylamide)聚合而成,这一聚合过程需要有自由基催化完成。常用的催化聚合方法有两种:化学聚合和光聚合。化学聚合通常是加入催化剂过硫酸铵(AP)以及加速剂四甲基乙二胺(TEMED),四甲基乙二胺催化过硫酸铵产生
自由基。溶液的pH对聚合作用是重要的,因为过低 pH没有足够的碱基加速催化反应,同样过多的氧分子存在,会使聚合作用很快停止。所以制备凝胶时,在加过硫酸铵之前,混合物必须抽去空气。核黄素催化的聚合作用,常用于制备浓缩胶,因为这样制得的凝胶孔度要大些。核黄素在光照射下及有微量氧存在时,产生自由基使Acr发生聚合作用。
我跑电泳时,总会出现这样的情况:目的条带没有,点样孔里倒是亮亮的.无论是跑DNA还是RNA 都出现过这样的情况。麻烦大家帮忙分析一下。
加样孔这个位置提供的是杂质残留的信息。导致加样孔发亮的原因非常多,其中最主要的是非蛋白质/非核酸类的大分子杂质 (如多糖、多酚) 的残留以及蛋白质和核酸的同步残留。大分子杂质的残留,首先与样品本身有关 (如植物、菌、动物肝脏、肺等),其次与所使用的方法/试剂去除这些杂质的能力有关。蛋白质和核酸的同步残留,少量与样品有关 (如肌肉),大部分则与所使用的方法/试剂,以及操作不当有关。另外,样品使用过量,也是一个重要原因。还有,加样孔不干净也有可能,但是可能性不大。
我是一个新手,请教一下为什么聚丙烯凝胶电泳中的浓缩胶可以把样压成一条线呢?为什么浓缩胶和分离胶的电压不一样,浓度也不一样?原理是什么?
多谢低浓度的凝胶具有较大的孔径,如3%的聚丙烯酰胺凝胶对蛋白质没有明显的阻碍作用,可用于平板等电聚焦或SDS-聚丙烯酰胺凝胶电泳的浓缩胶,也可以用于分离DNA;高浓度凝胶具有较小的孔径,对蛋白质有分子筛的作用,可以用于根据蛋白质的分子量进行分离的电泳中.
样品在电泳过程中首先通过浓缩胶,在进入分离胶前由于等速电泳现象而被浓缩。这是由于在电泳缓冲液中主要存在三种阴离子,Cl、甘氨酸阴离子以及蛋白质-SDS复合物,在浓缩胶的pH值下,甘氨酸只有少量的电离,所以其电泳迁移率最小,而Clsds聚丙烯酰胺凝胶电泳的电泳迁移率最大。在电场的作用下,Cl最初的迁移速度最快,这样在Cl后面形成低离子浓度区域,即低电导区,而低电导区会产生较高的电场强度,因此Cl后面的离子在较高的电场强度作用下会加速移动。达到稳定状态后,Cl和甘氨酸之间形成稳定移动的界面。而蛋白质-SDS复合物由于相对量较少,聚集在甘氨酸和Cl的界面附近而被浓缩成很窄的区带(可以被浓缩三百倍),所以在浓缩胶中Cl是快离子(前导离子),甘氨酸是慢离子(尾随离子)。

本文发布于:2024-09-21 15:51:16,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/372561.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议