船舶加热盘管自动布置系统设计与开发

第43卷第5期2021年5月
舰船科学技术
SHIP SCIENCE AND TECHNOLOGY
Vol.43,No.5
May,2021船舶加热盘管自动布置系统设计与开发
许晓东,何丽丝,王德禹
(上海交通大学船舶海洋与建筑工程学院,上海200240)
摘要:船舶加热盘管在船舶庞大的管路系统中占有一定的比重,但是船舶的管路三维布置设计还是通过手工一根根布置操作完成,其效率较低。为此,本文开展船舶加热盘管自动布置技术探索和研究。通过采用“S”型的路径规划方案布置管路和路径回溯算法来判断路径规划终止条件,完成空间内探路,以出口管路算法形成完整路径。最后应用加热盘管的总长度优化算法,达到设计长度要求。通过在三维平台开发和模型验证结果表明,船舶加热盘管自动布置系统可以缩短设计时间80%以上,取得良好效果。
黄光工艺关键词:船舶加热盘管;自动布置;路径规划;CAA
中图分类号:U662.9文献标识码:A
文章编号:1672-7649(2021)05-0092-05doi:10.3404/j.issn.l672-7649.2021.05.019
Design and development of automatic routing system for ship heating pipe
XU Xiao-dong,HE Li-si,WANG De-yu
(School of N aval Architecture,Ocean and Civil Engineering,Shanghai Jiaotong Unversity,Shanghai200240,China)
Abstract:The ship heating pipe occupies a certain proportion in the huge piping system of the ship,but the three-di­mensional piping layout design of the ship is completed by manual one-by-one arrangement operation,which is inefficient.Therefore,this paper carries out exploration and research on automatic routing technology of ship heating pipe.Firstly,by using the H S h type route planning plan to arrange pipelines and path traceback algorithm to judge the termina­tion conditions of path planning,the space exploration is completed.The complete path is formed by the outlet pipeline al­gorithm agam.Finally,the total length of heating pipe is optimized to meet the design length requirements.The results of three-dimensional platform development and model test show that the a
utomatic routing system of ship heating pipe can shorten the design time by more than80%and achieve good application results.
Key words:ship heating pipe;automatic routing;path planning;CAA
o引言
为了保证远洋船舶航行燃料使用的经济性,船舶离开港口后,船舶主机基本上采用燃烧重油为船舶提供动力。船舶加热盘管是船舶管系中一类特殊的管路,利用蒸汽对常温下粘度比较高的燃料油舱进行整体加热到50T左右,使燃油有较低的粘度,保证燃油输送和净化正常工作。以5000TEU集装箱船为例,燃料油舱6000m3左右,加热盘管长度3000m左右。在船舶设计过程中,燃料油舱通常分布在机舱区域和货舱分段区域,加热盘管设计需要设计人员反复进行三维管路操作绘制,计算修改才能完成。
当前,各类主流的船舶、汽车、飞机等行业的设计软件提供了可视化的管路建模功能,但是管路设计还是需要设计人员一根根地建模布置。各行业中的管路设计主要依靠设计人员根据规范、制造工艺、工作经验来完成布置管路设计。船舶复杂管系设计一贯是在船舶设计过程中占有较高的比重,对船舶设计和建造周期有很大影响。船舶管系智能设计系统开发和应用是船舶智能数字化设计的迫切需求,也是未来发展的必然趋势。船舶加热盘管系统作为船舶管系的一个组成部分,其环境相对独立,要求设计较明确。因此船舶加热盘管自动布置开发可以作为实现船舶管系自动布置的一个突破点,并可以
电弧螺柱焊机实现较高工程实用价值。
收稿日期:2020-04-24
基金项目:教育部、财政部重大科研项目资助项目(教技函[2013]35号)
作者简介:许晓东(1981-),男,工程师,研究方向为船舶智能制造和数字化设计应用。
第43卷许晓东,等:船舶加热盘管自动布置系统设计与开发•93•
加热平台船舶加热盘管布置设计也可以理解成路径规划PT。将舱室加热盘管的进口作为路径起点,出口作为路径终点,船体结构作为障碍物,进行管系路径规划。目前的路径规划大部分都是以最短时间或者以最短路径距离规划为目标⑸,涉及管路自动布置研究一般是根据工艺规则并结合RRT算法、A*算法、遗传算法等[*8]实现管路规划。但加热盘管路径规划有着重要区别,首先,加热盘管为了保证加热量具有确定的长度要求。其次,加热盘管需要保证加热均匀,要求管路分布均匀。本文在达索公司的3DEXPERINCE V6三维平台上进行二次开发船舶加热盘管自动布置系统,并进行相应船舶分段模型测试。
1研究对象问题描述
1.1加热盘管外部环境
加热盘管外部环境是封闭船体舱室结构。舱室内部四周主要分布纵骨、舱内肋骨、肋板等结构,有些特殊位置如舷底外板,四周会有一面是曲面板或斜板。舱室底部一般都是平面板。舱壁通常布置液位计、温度指示器、温度传感器、液位高低位传感器等设备和附件。同时内部通常包含一些测深管、用于料油输送的吸口管路、加油管路等。
1.2加热盘管设计要求
根据油舱蒸汽加热系统计算方法中的经验公式可知[9-10],加热盘管有效长度有一定的上限值,依据舱室加热量需要选择合适的管径。一般通径DN40的管路最大长度可以到100m左右,通径DN50的管路最大长度可以到130m左右。同时,加热盘管也可以采用多层布置,满足加热量要求。特殊要求也可以采用多根管路并排多层布置。如特殊的燃油舱室结构,在其舱室底部无法均匀布置管路时,也可以分区域分组多层均匀布置加热盘管等多种方案,使总体上满足加热均匀即可。
1.3加热盘管布置要求
加热盘管的进出口在舱室中位置,一般根据设计的综合布置要求已基本确定,本文将此作为已知信息。加热盘管一般采用套管连接,在设计布置过程中需要充分考虑现场焊接施工的要求。管子之间的间距控制大于250mm,管子和舱壁结构之间的距离大于300mm,有利于现场安装操作。同时,为了有利于管子制作施工和充分发挥加热效果,加热盘管布置一般采用平行舱室底部,管系之间距离相等,
均匀分布。如果单层加热盘管布置长度达不到设计要求,可以采用多层布置。加热盘管布置样式具有多种方案(见图1),具体的方案需要根据工艺要求和设计者偏好决定。
2加热盘管自动布置算法研究
2.1加热盘管自动布置样式
根据上文的管路布置要求,本文加热盘管采用“S” 型路径规划方案[11-12]o路径规划方案如下:以直径等于管路直径的球体作为探路者,从舱室进口开始一段距离后,以自定义开始方向,采用“S”型路径向前探路。探路球体前方与周边环境发生干涉,则开始改变方向,转向进口方向前进一定距离后,沿着“S”型路径开始方向的反向探路,通过不继重复,遍历环境空间,最终形成“S”型加热盘管路径(见图2)。
2.2加热盘管路径终止条件
本文探路球体遇到干涉时,采用路径回溯算法判断是否停止。路径回溯算法如下:当干涉时,探路球体将沿着平行于开始方向的原路径返回,并检查沿着出口方向下一个转折点是否干涉。如果下一个转折点不干涉,且没有经过起点附近,可以继续探路(见图3)。
反之探路球体如果一直干涉且与起点之间距离已到最小值,说明已经到达舱室内部最深处,停止探路
(见图4)。采用回溯算法优点是可以完整地遍历整个舱室内部空间,同时避开舱室内部结构部件的干扰。通过完整地遍历整个模型空间,可以计算单层加热盘管可布置的长度最大值。
2.3加热盘管的出口管路算法
在采用“S”型路径规划方案探路终止时,
已知路
• 94 •
舰船科学技术第43卷
进口
障碍物
障程物
障碍物
回溯判断后最终路径
图3应用回溯算法继续探路
Fig. 3 Using  backtracking  algorithm  to  continue  to  explore  the  way
管路路径布置。
2.4加热盘管的总长度优化
通过上述加热盘管采用“S ”型路径规划方案,采 用最小限制的管距和最低的外部环境结构干涉距离参 数,遍历环境空间并计算得到加热盘管的总长厶X如
果管子设计长度厶K 要求,则0K 应小于等于实现模型
总长厶T (2加+1 ) Lc+2m (L b -L d ) +2厶矿血,其中长管根
数加=0,1,2,3,4,5…,加必需是非负整数。当加=0时,加 热盘管是单圈布置(见图6)。
”进口
障碍物
障碍物
进口
障碍物
回溯判断后最终路径
障碍物
图6单圈布置加热盘管
Fig. 6 Single-loop  pipe  heating  pipe
图4应用回溯算法终止探路
Fig. 4 Using  backtracking  algorithm  to  stop  to  explore  the  way
径并没有与出口进行连接,因此增加出口管路路径算
法。管路路径可以用一系列点P  ( x,y,z )坐标序列表 达,其管路路径表示为path  = {Pi,P2,…,几』9,…,心}
(见图5)。当加>0时,可以保证加热盘管布置根数必需是偶
数(见图7)。如果加热盘管布置根数是奇数,将出 现加热盘管内部路径连接错误或者出口路径连接错
误。通过调节依次参数加,L d , L c ,乙的值,使得 厶•与厶k 接近。首先在G ,",厶方初始值情况下求出
加的最小值,再在加不变的情况下调节",L c ,厶佥的
值,调节管系总长在设计要求5%以内,完成管系布
Fig. 5 Outlet  pipeline  algorithm  of  heating  pipe
图7偶数根布置加热盘管
Fig. 7 Even  number  of  heating  pipes
从图中可以看出,由公式z=4n+4和j =4h +5,其中 力=0,1,2,3,4,5…,计算出来路径中P t 点和Pj 点是在出口
侧。同时通过公式可以判断路径中的最后一点P 税是否
沉淀池在出口侧,方法是将加代入上述公式Z 和丿中,计算 〃值。如果2个〃都是非整数,则路径中最后一个点是
和进口在同一侧,需要对现有路径进行优化调整。如 果有一个〃值是整数,则路径中最后一个点是和出口
在同一侧。通过公式对路径剩余点进行计算,可以区
分路径点是否在出口侧。对在出口侧的点进行向进口 方向平移自定义距离,并连接出口管路,可完成出口3加热盘管自动布置体系统开发3.1系统总体框架
船舶加热盘管自动布置系统总体框架分为4个部
分:管路设计的数值参数设定、管路的参照物交互选 择、各种功能实现操作、自动布置管路结果信息的显 示,如图8所示。
3.2系统开发平台
近年来,达索公司推出的3DEXPERINCE  V6平
台,在飞机、船舶、汽车等多个领域都有广泛的应
用,同时提供了一套三维管路设计模块。
具有功能丰
第43卷许晓东,等:船舶加热盘管自动布置系统设计与开发•95•
长途运输鱼苗时船舶加热盘管自动布置系统总体框架
H数值参数h r|参照物卜彳功能H结果L
|管路通径||进口中心|
I开始方向|
|布置层数|1出口中心||生成管路|
|最小间距|||进口方向|1
第一方向
|布置层高|[出口方向|
1初始路径|显示总长| |探路步长||支撑面|
17"口甲彳工
|管路总长1[方向面[对齐路径
图8系统总体框架
Fig.8Overall framework of the system
富的三维管路系统建模功能,但是管路自动布置功能还是处于空白区。因此本文基于组件的一种开发方法3DEXPERINCE CAA(Components Application Architec­ture)和C++语言开发加热盘管自动布置系统。主要调用CAA中CATInterfereSolver类用于检查干涉检查,CATFrmEditor类用于模型识别读取,
CATIMmiMechan-icalFeature类用于三维模型特征读取,CATMath-Point类和CATMathVector类用于空间向量计算。
3.3系统功能介绍
开发的系统界面如图9所示,其中主要参数有Pipe Diameter(管径),Step Length(探路步长), Start Point(进口中心点),Start Direction(进口方向),End Point(岀口中心点),End Direction(出口方向),Support Plane(管路的支撑面/参照面), Direction Plane(管路方向约束参照面),Total Length(设计总长)。有2个方向调节辅助功能:Start Direction功能是调整管路在舱室的进口方向,First Dir-ection功能是调整加热盘管路径规划的开始方向。应 用Automatic Routing功能完成管路自动布置,Total
图9软件主界面
Fig.9Software main interface Length栏显示生成的管系模型实际总长。
4实例验证
为验证船舶加热盘管的自动布置系统的可行性,在3DEXPERINCE V6软件中打开需验证舱室模型。其模型外形尺寸为15000mmx4500mmx4600mm,分成2个舱室,如图10所示。
图10测试舱室模型
Fig.10Test ship tank model
1)主程序中设置管子通径为50mm,探路步长20n)m,加热盘管设计长度为50000mm;
2)在程序分别选择舱室内进出口中心点和方向线来分别确定加热盘管的起点和方向,加热盘管的终点和方向;
3)分别选择舱室结构的底面和正面来确定加热盘管支撑面和管路布置开始方向。如果方向不对,可以调整加热盘管进口方向和加热盘管规划开始方向。应 用Automatic Routing功能计算加热盘管路径;
4)自动生成加热盘管路径和三维管路系统,如图11所示。单层加热盘管自动布置程序总计运行时间约为5min o
图11单层加热盘管布置
Fig.11Single layer heating pipe arrangement
在实际应用中,如果加热盘管设计要求是90000 mm,在单层布置不能满足设计要求的情况下,可以
在程序中设置Layer Number(管路层数)参数为2,进行自动布置。加热盘管出口可以根据Layer Distance(
消防管道防冻
•96•舰船科学技术第43卷
高)参数,自动计算出口位置。应用加热管路自动布置软件Automatic Routing功能计算加热盘管布置路径,如图12所示。
图12多层加热盘管布置路径
Fig.12Arrangement path of multi-layer heating pipe
最终自动生成加热盘管三维管路系统,如图13所示。双层加热盘管自动布置程序总计运行时间约为6min o经过实际调研,设计人员在能一次性正确地布置本实例加热盘管下,通常至少需要30min以上。因此通过船舶加热盘管的自动布置系统至少可以缩短80%以上设计时间。
图13多层加热盘管布置模型
Fig.13Layout model of multilayer heating pipe
5结语
本文通过研究船舶加热盘管布置基本设计安装要求和加热盘管路径规划算法,在三维设计软件平台上开发船舶加热盘管管路自动布置系统,进行开拓性的探索和实践验证。
1)通过对船舶加热盘管设计和安装要求进行分析可知,加热盘管布置具有特定的规则,其外部环境影响较小,是管路自动布置系统实现有利条件。加热盘管自动布置系统可有效减少加热盘管手工布置的工作量,具有一定的工程应用价值。
2)通过采用“S”型路径规划方案,路径回溯算法来判断终止条件,出口管路算法形成完整路径。最终采用加热盘管的总长度优化算法,达到设计长度要求。
3)在3D EXPERIENCE V6软件平台,应用CAA 二次开发实现船舶加热盘管系统。通过在具有代表性的船舶舱室分段结构环境下验证,实现多种实用方案的船舶加热管系自动布置,并缩短设计时间80%以上,取得了满意的应用效果,验证此系统具有工程实用价值。
参考文献:
[1]ZHU D,LATOMBE J C.Pipe routing=path planning(with
many constraints)[C]//Proceedings of the1991IEEE International Conference on Robotics and Automation.
Sacramento,California:1991:1940-1947.
[2]张广林,胡小梅,柴剑飞,等•路径规划算法及其应用综述
[J].现代机械,2011,165(5):85-90.
[3]简毅,高斌,张月.一种室内扫地机器人全遍历路径规划方
法研究[J]•传感器与微系统,201&37(1):37-39.
[4]王素琴,王飞,袁建平,等.基于双向RRT算法的管线路径规
划及建模仿真[J].太原理工大学学报,201&49(6):839-845.
[5]董宗然,林焰•基于最短路径快速算法的船舶管路自动敷设
方法[J].计算机集成制造系统,2014,20(12):52-62.
[6]吴宏超,刘检华,唐承统,等.基于改进A*算法的管路自动布
局设计与优化方法[J].计算机集成制造系统,2016,22(4): 79-88.
[7]范小宁,林焰,纪卓尚.船舶管路三维布局优化的变长度编
码遗传算法[J].中国造船,2007,48(1):86-94.
[8]樊江,马枚,杨晓光.航空发动机外部管路自动敷设研究[J].
机械设计,2003,07:21-23.
[9]中国船舶工业总公司.油舱蒸汽加热系统计算方法:CB/T
3373-2013[S].北京:中国船舶工业综合技术经济研究院, 2014.
[10]赵波,许晓达,李全昆•油船货油舱蒸汽加热系统设计及相
关技术应用[J].船海工程,2019,48(2):62-65,70.
[11]赵晓东,鲍方.清洁机器人路径规划算法研究综述[J].机电
工程,2013,30(11):1440-1444.
[12]简毅,高斌,张月.一种室内扫地机器人全遍历路径规划方
法研究[J].传感器与微系统,201&37(1):
32-34.

本文发布于:2024-09-20 20:31:12,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/337964.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:加热盘管   布置   船舶   管路
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议