一种基于多普勒雷达的非接触式呼吸监测方法与流程



1.本发明属于呼吸频率监测技术领域,具体涉及一种基于多普勒雷达的非接触式呼吸监测方法。


背景技术:



2.近年来关于非接触式生理特征监测的研究方兴未艾,各种非接触式生理特征监测方法不断涌现。它们基于的监测媒介多种多样,包括红外,声波和光学等。然而基于上述媒介的非接触式生命体征监测技术或多或少都具有局限性。比如红外探测器会受到监测对象附近的热源的影响;声波探测器以空气为传输介质,容易受到空气湿度和气流的影响,且在棉纱这类吸收声波的材料中无法使用;光学探测器容易受到各种光的干扰,在烟雾较多,视线不佳或者监测对象身体有遮挡的情况下都很难发挥作用。这些局限性阻碍了其进一步的发展。
3.基于多普勒雷达的非接触式生命体征监测技术,也被广泛地称为生物雷达技术,其采用微波作为探测媒介,具有抗干扰能力强,对非金属障碍物穿透力强,集成度高,功耗低等众多优点。但是现有基于多普勒雷达的生理特征监测方法在算法上大多比较简单,往往仅通过相应的带通滤波器等手段直接提取雷法回波中的生命体征信号,这使得提取到的信号中仍包含大量噪声和干扰,导致提取的信号质量不高。


技术实现要素:



4.为了解决现有非接触式呼吸监测方法测量精度不高,使用条件受限,易受环境干扰等方面的问题,本发明提出一种基于多普勒雷达的新型呼吸监测方法。通过对雷达接收数据处理算法的创新设计,实现较好的呼吸监测效果。
5.为了实现上述目的,本发明采用如下的技术方案:
6.对雷达回波信号的预处理,对监测对象胸廓位置的确定,对监测对象胸廓运动信息的提取,对监测对象呼吸波形的提取以及对呼吸频率的估计。
7.s1、向监测对象所在区域发射周期性的线性调频连续波脉冲,并使用天线阵列采集相应的回波信号;
8.s2:所述对雷达回波信号的预处理主要包括对雷达回波信号进行混频,混频输出为一个中频信号x
out

[0009][0010]
该中频信号的幅值a为常数,频率和相位均正比于反射面和天线的距离r,如下式所示:
[0011][0012]
其中:s为线性调频连续波频率随时间的变化率,c为光速,λ为所用调频连续波的波长,均为常数。
[0013]
最后对混频输出的中频信号进行fft处理,得到频谱中不同频率的成分即代表不同距离处的物体反射的雷达回波信号。
[0014]
s3:本方法中对监测对象胸廓位置的确定使用了一种基于mvdr的二维位置搜索算法:
[0015]
s3-1、记某时刻,天线阵列中第n根天线接收到的数据经过上述预处理后的序列为xn,该序列中的第k个数据记为x
n,k
,则当前时刻,接收阵列所接收到的某一特定距离处的接收向量可以表示为:
[0016]
xk=[x
1,k
x
2,k
...x
n,k
]h[0017]
其中n表示接收阵列中接收天线的根数。
[0018]
s3-2、利用该接收向量xk计算协方差矩阵r
xx

[0019]rxx
=xkx
kh

[0020]
s3-3、结合相应方向的导向矢量α(θ),
[0021][0022]
即可得到该距离和角度处的估计功率谱pk(θ),
[0023][0024]
s3-4、遍历监测范围内的所有的方向角θ并代入上式,即可得到监测范围内当前距离处随波达方向角θ变化的功率谱pk(θ);再改变上式中的k,按同样的方法得到监测范围内其他距离处随角度变化的功率谱。合并上述结果即可得到当前时刻监测范围的关于与天线间距离和相对天线阵列方向角的二维功率谱。
[0025]
s3-5、到该功率谱中的峰值位置,即认为是监测对象胸廓所在的位置。
[0026]
s4、所述对监测对象胸廓运动信息的提取是根据上述对监测对象胸廓位置确定算法得到的位置参数,具体包括监测对象胸廓相对天线阵列的距离和方向角来提取特定位置的运动信息。其具体的计算过程为:根据监测对象相对天线阵列的距离参数以及上述预处理后中频信号的频率正比于该距离的特性,从预处理后的数据中心选择相应的中频信号成分。按照下式从中频信号的相位信息中提取监测对象胸廓所在距离处的运动信息r,
[0027][0028]
根据监测对象胸廓相对天线阵列的方向角参数θ生成相应的权向量ω
θ

[0029][0030]
通过该权向量,从天线阵列接收到监测对象胸廓所在距离处的运动信息r中进一步提取监测对象胸廓所在角度处的运动信息。
[0031]
s5、所述对监测对象呼吸波形的提取采用了改进的完全集合经验模态分解方法,即改进的ceemd算法。
[0032]
s5-1、首先定义算子ej(.)为使用经典emd算法求解第j个imf分量。设x[n]表示原始信号序列,wi[n]表示分布为n(0,1)的高斯白噪声序列。
[0033]
s5-2、为了提高计算速度,对imf分量的判断条件进行了改进。
[0034]
定义:
[0035][0036]
其中u(t)和v(t)分别表示当前信号分量的上包络序列和下包络序列。imf分量的判断条件共有2个:
[0037][0038][0039]
其中#表示集合中元素的个数。通常取θ1=α=0.05。
[0040]
s5-3、采用包络极值延拓的方式对emd方法中的端点效应进行抑制,具体的执行方法为:在分解某一特定imf分量的历次迭代过程中,在原始信号序列左边延拓2个极大值点和2个极小值点,右边延拓2个极大值点和2个极小值点;
[0041]
s5-4、对于提取到监测对象胸廓的运动信息序列,首先随机取m个不同的白噪声序列wi[n],i=1,2,...,m,将它们的方差缩放到合适的尺度后分别叠加到原始信号序列x[n]上,通常ε取为原始信号序列标准差的0.1~0.3倍。按照下式进行第一次emd分解并在原始信号序列减掉第一次的分解结果。
[0042][0043]
r1[n]=x[n]-imf1[n];
[0044]
对于从第2个开始的imf分量,均按照如下方式进行分解
[0045][0046]rk
[n]=r
k-1
[n]-imfk[n];
[0047]
其中ε
k-1
通常取第(k-1)个剩余分量序列的标准差的0.1~0.3倍。
[0048]
当剩余分量不再满足继续分解的条件时,停止分解,得到一个剩余的残差。
[0049][0050]
对每个imf分量进行fft处理得到其频谱,统计其在呼吸频段(0.1hz~0.5hz)的能量占总能量的比例,认为当该比例高于某一阈值时,该imf分量即为呼吸信号或呼吸信号的一部分,加以保留。最后将所有保留的imf分量求和,即认为是监测对象的呼吸波形。
[0051]
s6、对呼吸频率的估计是通过fft获得上述提取到的呼吸波形,得到相应的频谱。搜索到频谱中的峰值,即可根据下式估计得到呼吸频率:
[0052][0053]
其中f为通过此方法得到的呼吸频率,单位为bpm;f0为采样频率,单位为hz。k和n
分别为频谱中峰值对应的下标和最大下标。
[0054]
本发明的优点在于:本发明提出了一种基于多普勒雷达的非接触式呼吸监测算法,对于雷达天线接收到的回波信号,依次经过预处理,提取胸廓位置,提取胸廓运动信息,提取呼吸波形信息,呼吸频率估计等步骤,最终得到监测对象的呼吸波形和频率参数。相比传统的监测方法,本方法的监测对象的胸廓具有更高的定位精度,这是能够准确提取胸廓运动信号的基础。通过改进之后的ceemd算法进行呼吸和心跳信号的分离,该算法对体动干扰,背景噪声和生命体征信号具有良好的分离效果,通过改进,也有效地改善了原始ceemd算法中的端点效应的问题,同时提高了分解速度。
附图说明
[0055]
图1为胸廓位置确定效果展示。
[0056]
图2为通过改进的ceemd算法分离得到呼吸和心跳信号效果展示。
[0057]
图3为通过雷达回波信号提取到的呼吸波形与基准波形的对比。
具体实施方式
[0058]
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
[0059]
本实施例中提出了一种基于多普勒雷达的非接触式呼吸监测方法,具体如下:
[0060]
s1、向监测对象所在区域发射周期性的线性调频连续波脉冲,并使用天线阵列采集相应的回波信号;
[0061]
s2:所述对雷达回波信号的预处理主要包括对雷达回波信号进行混频,混频输出为一个中频信号x
out

[0062][0063]
该中频信号的幅值a为常数,频率和相位均正比于反射面和天线的距离r,如下式所示:
[0064][0065]
其中:s为线性调频连续波频率随时间的变化率,c为光速,λ为所用调频连续波的波长,均为常数。
[0066]
最后对混频输出的中频信号进行fft处理,得到频谱中不同频率的成分即代表不同距离处的物体反射的雷达回波信号。
[0067]
s3:本方法中对监测对象胸廓位置的确定使用了一种基于mvdr的二维位置搜索算法:
[0068]
s3-1、记某时刻,天线阵列中第n根天线接收到的数据经过上述预处理后的序列为xn,该序列中的第k个数据记为x
n,k
,则当前时刻,接收阵列所接收到的某一特定距离处的接收向量可以表示为:
[0069]
xk=[x
1,k
x
2,k
...x
n,k
]h[0070]
其中n表示接收阵列中接收天线的根数。
[0071]
s3-2、利用该接收向量xk计算协方差矩阵r
xx

[0072]rxx
=xkx
kh

[0073]
s3-3、结合相应方向的导向矢量α(θ),
[0074][0075]
即可得到该距离和角度处的估计功率谱pk(θ),
[0076][0077]
s3-4、遍历监测范围内的所有的方向角θ并代入上式,即可得到监测范围内当前距离处随波达方向角θ变化的功率谱pk(θ);再改变上式中的k,按同样的方法得到监测范围内其他距离处随角度变化的功率谱。合并上述结果即可得到当前时刻监测范围的关于与天线间距离和相对天线阵列方向角的二维功率谱。
[0078]
s3-5、到该功率谱中的峰值位置,即认为是监测对象胸廓所在的位置。
[0079]
s4、所述对监测对象胸廓运动信息的提取是根据上述对监测对象胸廓位置确定算法得到的位置参数,具体包括监测对象胸廓相对天线阵列的距离和方向角来提取特定位置的运动信息。其具体的计算过程为:根据监测对象相对天线阵列的距离参数以及上述预处理后中频信号的频率正比于该距离的特性,从预处理后的数据中心选择相应的中频信号成分。按照下式从中频信号的相位信息中提取监测对象胸廓所在距离处的运动信息r,
[0080][0081]
根据监测对象胸廓相对天线阵列的方向角参数θ生成相应的权向量ω
θ

[0082][0083]
通过该权向量,从天线阵列接收到监测对象胸廓所在距离处的运动信息r中进一步提取监测对象胸廓所在角度处的运动信息。
[0084]
s5、所述对监测对象呼吸波形的提取采用了改进的完全集合经验模态分解方法,即改进的ceemd算法。
[0085]
s5-1、首先定义算子ej(.)为使用经典emd算法求解第j个imf分量。设x[n]表示原始信号序列,wi[n]表示分布为n(0,1)的高斯白噪声序列。
[0086]
s5-2、为了提高计算速度,对imf分量的判断条件进行了改进。
[0087]
定义:
[0088][0089]
其中u(t)和v(t)分别表示当前信号分量的上包络序列和下包络序列。imf分量的判断条件共有2个:
[0090]
[0091][0092]
其中#表示集合中元素的个数。通常取θ1=α=0.05。
[0093]
s5-3、采用包络极值延拓的方式对emd方法中的端点效应进行抑制,具体的执行方法为:在分解某一特定imf分量的历次迭代过程中,在原始信号序列左边延拓2个极大值点和2个极小值点,右边延拓2个极大值点和2个极小值点;
[0094]
s5-4、对于提取到监测对象胸廓的运动信息序列,首先随机取m个不同的白噪声序列wi[n],i=1,2,...,m,将它们的方差缩放到合适的尺度后分别叠加到原始信号序列x[n]上,通常ε取为原始信号序列标准差的0.1~0.3倍。按照下式进行第一次emd分解并在原始信号序列减掉第一次的分解结果。
[0095][0096]
r1[n]=x[n]-imf1[n];
[0097]
对于从第2个开始的imf分量,均按照如下方式进行分解
[0098][0099]rk
[n]=r
k-1
[n]-imfk[n];
[0100]
其中ε
k-1
通常取第(k-1)个剩余分量序列的标准差的0.1~0.3倍。
[0101]
当剩余分量不再满足继续分解的条件时,停止分解,得到一个剩余的残差。
[0102][0103]
对每个imf分量进行fft处理得到其频谱,统计其在呼吸频段(0.1hz~0.5hz)的能量占总能量的比例,认为当该比例高于某一阈值时,该imf分量即为呼吸信号或呼吸信号的一部分,加以保留。最后将所有保留的imf分量求和,即认为是监测对象的呼吸波形。
[0104]
s6、对呼吸频率的估计是通过fft获得上述提取到的呼吸波形,得到相应的频谱。搜索到频谱中的峰值,即可根据下式估计得到呼吸频率:
[0105][0106]
其中f为通过此方法得到的呼吸频率,单位为bpm;f0为采样频率,单位为hz。k和n分别为频谱中峰值对应的下标和最大下标。
[0107]
采用上述实施例的方法对进行患者呼吸监测,得到如下结果:
[0108]
图1所示为胸廓位置确定效果展示,图中绿的线表示采用光学方法得到监测过程中胸廓的基准位置,蓝的线表示基于上述方法从雷达回波信号中估计得到的胸廓的位置,从图中可以看出,上述方法能够十分准确地估算出监测对象胸廓的位置。
[0109]
图2为通过改进的ceemd算法分离得到呼吸和心跳信号效果展示,从图中可以看出imf1和imf2为环境与系统中出现的高频噪声,imf3和imf4为分离出的监测对象的心跳信号分量,imf5为监测对象的呼吸信号分量。
[0110]
图3为通过雷达回波信号提取到的呼吸波形与基准波形的对比,从图中可以看出通过上述算法从雷达回波中提取到的呼吸波形与通过光学方法采集的基准呼吸波形几乎
是一致的。说明基于上述算法提取到的呼吸波形具有较高的质量。
[0111]
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。

技术特征:


1.一种基于多普勒雷达的非接触式呼吸监测方法,其特征在于,包括如下步骤:s1、向监测对象所在区域发射周期性的线性调频连续波脉冲,并使用天线阵列采集相应的回波信号;s2、采用混频和fft的方式对雷达回波信号进行预处理;s3、从雷达回波信号中提取监测对象胸廓所在的位置,具体包括相对于天线阵列的距离和方向角参数;s4、采用相位相关的方法,从雷达回波信号中提取监测对象胸廓所在位置的运动信息;s5、采用改进的ceemd算法,从监测对象胸廓的运动信息中提取呼吸波形分量;s6、利用提取到监测对象的呼吸波形得到相应的频谱,基于此频谱估计得到监测对象的呼吸频率。2.根据权利要求1所述的一种基于多普勒雷达的非接触式呼吸监测方法,其特征在于:所述步骤s1中的线性调频连续波脉冲调频范围为77ghz~81ghz,单个脉冲持续周期为50us,每次采样时会连续发射3个上述脉冲,采样频率为20hz,用于采集雷达回波信号的天线阵列包含4根等距的贴片天线。3.根据权利要求1所述的一种基于多普勒雷达的非接触式呼吸监测方法,其特征在于,所述步骤s2的预处理过程中,混频输出为一个中频信号,其幅值为一常数,频率和相位均正比于反射物体相对天线阵列的距离。4.根据权利要求1所述的一种基于多普勒雷达的非接触式呼吸监测方法,其特征在于,所述步骤s4中获取监测对象胸廓所在的位置的方法如下:s3-1、基于接收天线阵列接收到的数据,经过预处理后得到某一距离处的接收向量x
k
=[x
1,k x
2,k
...x
n,k
]
h
,其中n表示接收阵列中接收天线的根数;s3-2、基于接收向量x
k
,根据r
xx
=x
k
x
kh
计算得到当前距离处的协方差矩阵;s3-3、根据生成导向矢量α(θ),基于协方差矩阵r
xx
生成当前距离不同波达方向的功率谱其中θ为监测对象胸廓相对天线阵列的方向角参数,h表示对导向矢量进行共轭转置,λ为使用多普勒雷达发出线性调频波的波长;s3-4、遍历所有的距离下标,得到监测范围内每一距离处随波达方向变化的功率谱,合并结果,即得到当前监测范围的二维功率谱;s3-5、搜索上述监测范围二维功率谱的峰值,出其相对于天线阵列的距离和方向角参数,即认为是监测对象胸廓所在的位置。5.根据权利要求4所述的一种基于多普勒雷达的非接触式呼吸监测方法,其特征在于,所述步骤s4中监测对象胸廓运动信息提取的方法如下:根据监测对象相对天线阵列的距离参数以及上述预处理后中频信号的频率正比于该距离的特性,从预处理后的数据中心选择相应的中频信号成分,按照下式从中频信号的相位信息中提取监测对象胸廓所在距离处的运动信息r:
根据监测对象胸廓相对天线阵列的方向角参数θ生成相应的权向量ω
θ
:通过该权向量ω
θ
,从天线阵列接收到监测对象胸廓所在距离处的运动信息r中进一步提取监测对象胸廓所在角度处的运动信息。6.根据权利要求1所述的一种基于多普勒雷达的非接触式呼吸监测方法,其特征在于,所述步骤s5中使用改进后的ceemd算法从监测对象胸廓的运动信息中提取其呼吸波形,该算法的具体过程如下:s5-1、采用ceemd的方式对监测对象胸廓的运动序列进行分解;s5-2、计算其中u(t)和v(t)分别表示当前信号分量的上包络序列和下包络序列,通过判断以下两个条件作为判断emd分离出imf分量的判断条件:(1)(2)其中,θ1=α=0.05;s5-3、通过极值包络延拓的方法对经典emd算法中的端点效应进行抑制,其具体步骤为在原emd分解过程中,在原极大值序列和极小值序列两端各自延拓2个点;s5-4、对于采用改进ceemd方法得到的各阶imf分量,通过计算其在呼吸频段的能量占总能量的比例,判断其是否为呼吸波形或呼吸波形的分量。7.根据权利要求1所述的一种基于多普勒雷达的非接触式呼吸监测方法,其特征在于,所述步骤s6中通过选取一定时长的呼吸波形序列,使用fft得到该序列对应的频谱,搜索该频谱中的峰值,并由此估计得到监测对象的呼吸频率:其中,f为通过此方法得到的呼吸频率,单位为bpm;f0为采样频率,单位为hz,k和n分别为频谱中峰值对应的下标和最大下标。

技术总结


一种基于多普勒雷达的非接触式呼吸监测方法,对雷达回波信号进行预处理,从雷达回波信号中提取监测对象胸廓所在的位置,提取监测对象胸廓所在位置的运动信息,从监测对象胸廓的运动信息中提取呼吸波形分量,基于呼吸波形的相应频谱估计得到监测对象的呼吸频率。这种监测对象胸廓的方法具有更高的定位精度,是能够准确提取胸廓运动信号的基础。通过改进之后的CEEMD算法进行呼吸和心跳信号的分离,对体动干扰、背景噪声和生命体征信号具有良好的分离效果,通过改进有效地改善了原始CEEMD算法中的端点效应问题,提高了分解速度。提高了分解速度。提高了分解速度。


技术研发人员:

韩毅 叶建平 王硕玉

受保护的技术使用者:

南京浙溧智能制造研究院有限公司

技术研发日:

2021.07.29

技术公布日:

2022/12/9

本文发布于:2024-09-22 02:07:34,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/30400.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:胸廓   信号   呼吸   对象
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议