3-ruu并联机构弹性动力学分析与优化设计

摘要
3-RUU并联机构较DELTA机构而言,具有更小的惯量,在高速作业中具有优势。但3-RUU机构在轻量化设计以后,杆件及铰链处的弹性变形较大,严重影响末端的定位精度。因此,本课题在国家科技支撑计划的资助下,开展3-RUU机构的弹性动力学研究,并将研究结果用于3-RUU机构的轻量高刚度设计,具体研究内容如下。
切割环
3-RUU机构的运动学及工作空间研究。作为动力学研究的基础工作,首先对3-RUU并联机器人的正逆运动学及工作空间展开研究。利用坐标变换和几何方法分析了3-RUU机构的逆解和正解,建立了3-RUU并联机器人的正逆解数学模型,求解了雅可比矩阵条件数,研究发现,主动臂和从动臂杆长、静动平台半径之差对工作空间的影响显著,增大杆件长度可明显增大工作空间,但同时也将带来机构驱动扭矩增大,刚度降低等不良影响。隐私保护通话
在动力学分析方面,首先采用Lagrange方程分析3-RUU机构的多刚体逆动力学;在此基础上利用子结构的建模方法得到各子结构的有限元弹性动力学模型,最后,综合运动学和动力学约束,装配出系统弹性动力学模型。此模型建模过程中提出将虎克铰动力学转换为运动学约束的方法,使模型更为简化。
在优化设计方面,结合3-RUU并联机构的构型特点,选取主动臂和从动臂的尺寸及动平台质量作为主要优化对象,以机器人固有频率最大化为优化目标,驱动关节扭矩作为约束条件,以动力学特性和动力学分析结果为工具展开机构的优化设计。分别给出各参数对于系统固有频率的灵敏度,在此基础上综合考虑机构驱动关节扭矩限制。
本文在完成机器人设计的基础上,进行刚体动力学和柔体动力学建模,并结合CAE软件对机构进行优化设计,得到一组满足既定约束条件下的最优参数,经过仿真分析,验证了动力学分析结果及优化设计结果的有效性。
关键词:刚柔耦合多体动力学,机构优化设计,并联机器人,3-RUU机构
Abstract
3-RUU parallel mechanism compared to DELTA mechanism, with a smaller inertia, have advantages in high-speed operations. However, after the lightweight design of the 3-RUU mechanism, the elastic deformation of the bar and the hinge is larger, which seriously affects the positioning accuracy of the end effector. Therefore, this subject supported by the National Science and Technology Support Pro
过氧化氢酶活性测定gram is to research the elastic dynamics of the 3-RUU mechanism and apply the research results to the lightweight and high stiffness design of the 3-RUU parallel robot. The specific research contents are as follows.
pe附着力促进剂The research on Kinematics and Workspace of 3 - RUU Mechanism. As the basic work of the research on dynamics, the inverse kinematics and working space of 3-RUU parallel robot are studied. The inverse and format kinematics of 3-RUU mechanism are obtained by coordinate transformation and geometric method. The mathematical model of 3-RUU parallel robot is established, and the Jacobi matrix condition number is solved. It is found that the driving and driven arms’ parameters the distance between the static and moving platform has a significant effect on the workspace. Increasing the length of the arm can significantly increase the workspace, but it will also bring about the problem in driving torque increase and the stiffness decrease.
In the dynamic analysis, the Lagrange equation is used to analyze the multi-rigid body inverse dynamics of the 3-RUU mechanism. On this basis, the finite element elastic dynamic model of each sub-structure is obtained by the sub-structure modeling method. Finally, by integrating kinematics and dynamic constraints, we assembly of the system elastic dynamics model. In this modeling method, the method to converting the Hank hinge dynamics into kinematic constraints is put forward
瞬态电压抑制器
to make the model more simplified.
In the aspect of optimization design, combined with the configuration characteristics of 3-RUU parallel mechanism, the parameters of the driving and driven arms and the quality of the moving platform are chosen as the main optimization objects. The robot's natural frequency is optimized as the optimization target and the joint torque is used as the constraint condition , Using the dynamic characteristics and dynamic analysis to work out the mechanism's optimal design. Respectively, considering of the mechanism’s driving joint torque limit, the sensitivity of the parameters for the natural frequency of the system was given.
Based on the design process of the robot, the rigid body dynamics and the soft body dynamics modeling are carried out. Combined with the CAE software, the optimal design of the mechanism is obtained, and a set of optimal parameters under
the given constraints are obtained. After simulation analysis, Dynamic analysis results and optimization of the effectiveness of the design results is verified.
Keyword: Rigid-Flexible coupling multibody dynamic system,
Machinery optimization design, Parallel Robot, 3-RUU Manipulator
目录
摘要...................................................................................................................... I Abstract .................................................................................................................. II 目录....................................................................................................................... I V 第1章绪论 (1)
1.1研究背景及意义 (1)
1.2 国内外研究现状及分析 (4)
1.2.1 并联机器人刚度研究现状 (4)
1.2.2 并联机器人多柔体动力学研究现状 (5)
1.2.3 柔性并联机器人优化设计研究现状 (5)
1.2.4 国内外研究现状的简析 (6)
1.3 本文的主要研究内容 (6)
第2章3-RUU并联机构工作空间与运动学 (8)
2.1 3-RUU并联机器人工作空间分析 (8)
2.2 3-RUU并联机器人运动学分析与奇异性 (12)
2.2.1 3-RUU并联机构正逆解 (12)
2.2.2 3-RUU并联机构的奇异性分析 (13)
2.3本章小结 (14)
第3章3-RUU并联机构动力学 (15)
3.1 3-RUU并联机构刚体动力学 (15)
3.23-RUU 并联机构柔体动力学 (16)
3.2.1 谐波减速器柔性模型 (16)
3.2.2 小臂弹性动力学建模 (17)
3.2.3 大臂弹性动力学建模 (22)
3.2.4 系统弹性动力学模型组装 (24)
3.3 本章小结 (28)
第4章3-RUU并联机器人机构优化设计 (29)
4.1 刚体动力学条件下的机构参数优化 (29)
4.1.1 关节力矩峰值与杆件长度参数的关系 (29)
4.1.2 关节力矩峰值与杆件截面参数的关系 (31)
4.1.3 动平台材料对关节扭矩峰值的影响 (32)
4.2 刚柔耦合多体动力学条件下的机构参数优化 (32)
4.2.1 主动臂和从动臂长度参数对于机构固有频率的影响 (33)
4.2.2 主动臂和从动臂截面参数对机构固有频率的影响 (34)
4.2.3 动平台负载对机构固有频率的影响 (35)
4.3 机构综合优化 (37)
4.4 本章小结 (39)
第5章3-RUU并联机器人样机设计及实验研究 (40)
新型玉米播种机
5.1 3-RUU并联机器人设计简介 (40)
5.2 3-RUU并联机器人机构振动实验研究 (43)
5.3 本章小结 (47)
结论 (48)
参考文献 (50)
攻读硕士期间发表的论文及其他成果 (53)
(54)
致谢 (55)

本文发布于:2024-09-22 16:32:21,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/291352.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:机构   动力学   研究   并联   设计   机器人
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议