仿生机器狗机构特性与步态规划

中文摘要
近年来,随着人工智能的兴起,机器人技术得到蓬勃的发展,成为当今世界研究的热门领域之一。与轮式或者履带式机器人相比,足式机器人的离散式落足支撑更能适应非连续地面,比如山地、沟渠、坑洼地面等,这使得足式机器人成为机器人研究领域的热点。足式机器人的灵感最早来源于生物,是对生物形态和运动的模仿。本文机器人的模仿对象为犬类,研制的机器人为仿生机器狗。
首先,研究生物狗的结构特征和运动特性。第一步即研究犬类的生理结构,分析犬类四肢的作用,然后利用高速摄像机对标记好的生物狗进行运动捕捉,拍摄生物狗在不同运动状态下的运动视频。通过PHOTRON软件提取视频中标记点的有效数据,提取出的数据在软件MATLAB中分析处理,最终得到生物狗的结构特性和运动规律。
其次,根据研究所得的生物狗运动规律,参考生物狗的关节角变化范围、关节连接方式和形体尺寸等,设计仿生机器狗的本体结构,包括四肢和腰部。接着建立仿生机器狗的运动学模型,对单腿和整机进行运动学分析,通过运动学正解得到足端运动空间,通过运动学逆解得到各关节的转角以及电机驱动角。
接下来,规划出仿生机器狗的快速步态、慢速步态和转换步态。根据实验中生物狗的摆腿顺序规划出各个步态下相应腿的相位,并根据生物狗的足端轨迹特性规划快速步态和慢速步态的足端轨迹。其中针对快速步态的足端轨迹研究对比了多项式与复合摆线,选出更适合仿生机器狗的多项式足端轨迹,并根据
其稳定性判据判断快速步态的稳定性。慢速步态足端轨迹则采用多项式与直线结合的形式,使机器人相对于地面匀速运动,根据稳定裕度判断慢速步态稳定性。转换步态中提出在同一时间内四足相位与足端轨迹同时转换的方式,快速完成步态切换,且保证在任何时刻都有至少两条腿与地面接触。三种步态都在ADAMS软件中进行仿真,仿真结果表明三种步态均可平稳运动。
最后,搭建仿生机器狗的实验平台,对所规划的三种步态进行实验,实验表明,三种步态与规划的运动一致,可进行稳定的快速步态行走、慢速步态行走、并且快速的完成步态转换。
关键词:仿生;机器人;运动规划;步态转换
Abstract两根一起塞进来
With the development of Artificial Intelligence, Robotics has been booming and has become one of the most popular research fields in the world in recent years. Compared with Wheeled or Tracked robots, Legged robots are more suited to discontinuous ground, such as mountains, ditches, potholes and so on, which makes Legged robots become a hot area of robotics research. Legged robots’ inspiration came from the animals in the beginning, it was an imitation about structures and movements of biological. In this paper, we create a bionic robot dog inspire by dog.
汽车脚垫制造设备
First, study the structure and movement characteristics of a biological dog. The first step is to study the physiological structure of a dog and analyze the function of the dog's limbs, and then use a high-speed camera to capture the labeled biological dog to get motion videos of the biological dog in different movement state. Then through the PHOTRON software to extract valid data of the marker from the video, the extracted data is analyzed and processed in the software MATLAB. Finally, we get the biological dog's structural characteristics and movement laws.
Second, according to the biological dog's movement laws we studied, referring to the change range of the joint angles of the biological dog, and joint connection method and body size, the body structure of bionic robot is designed, including the four limbs and the lumbar. Then, we establish the kinematics model of bionic robot, the kinematics of one leg and the whole robot are analyzed. Therefore, we can obtain the foot movement space through the positive kinematics solution, and obtain the angles of each joint and the driving angle of the motor through the kinematics inverse solution.
Next, we plan fast gait, slow gait and transition gait of the bionic robot. Planning the phases of the corresponding legs under each gait according to the order of leg swinging of biological dog in the experiment, the foot end trajectories of fast gait and slow gait are planned according to the character
istics of the foot end of the biological dog in the experiment. Compared with the polynomial and compound cycloid, the polynomial, which is more suitable for bionic robot dog, is selected as the foot end trajectory of fast gait, the stability of fast gait is judged according to its
stability criterion. The slow gait adopts the foot trajectory, which is a combination of polynomials and straight lines to ensure robot move at a constant speed relative to the ground, the stability of slow gait is judged by the stability margin. In the transition gait, this paper proposed four leg switch phases and foot trajectories simultaneously in the same cycle in order to complete the gait switch quickly, and ensure that at any time at least two legs in contact with the ground. All three gaits are simulated in ADAMS software, the simulation results show that the three gaits can move smoothly.
Finally, we build the experiment platform of the bionic robot to test the three planned gaits. The experiments show that the three gaits in the experiment are consistent with the planned movements, that is to say, our robot can walk in stable with fast gait and slow gait, besides, it can complete the gait transform quickly.
Key words: bionic; robot; motion planning; gait transition
目 录
中文摘要 .................................................................................................................................. I Abstract ................................................................................................................................... I I 第1章绪论 .. (1)
1.1 研究背景与意义 (1)
1.2仿生机器人国内外研究现状 (2)
1.2.1国外四足机器人研究现状 (2)
1.2.2国内仿生机器人及步态规划研究现状 (5)
1.2.3研究现状总结 (7)
1.3本文研究内容与结构 (8)
第2章生物狗的运动特性分析 (10)
2.1犬类生理结构 (10)
2.2生物狗运动捕捉 (11)
2.3生物狗的运动规律分析 (13)
2.3.1各个关节角的运动规律 (13)
2.3.2前后腿各肢段的关系 (13)
2.3.3后腿膝关节与踝关节的关系 (14)
2.4本章小结 (15)
第3章仿生机器狗结构设计与运动学分析 (16)
3.1仿生机器狗结构设计 (16)
扬声器结构
3.2仿生机器狗运动学分析 (19)
半夏去皮机
3.2.1单腿运动学模型 (19)
3.2.2整机运动学分析 (22)
3.3本章小结 (26)
第4章仿生机器狗步态规划 (28)
4.1步态规划的基本问题 (28)
4.1.1步态 (28)
4.1.2占空比 (29)
4.1.3相位差 (30)
4.1.4足端轨迹 (31)
4.2动步态规划 (32)
4.2.1动步态稳定性判据 (32)
4.2.2动步态四足协调关系 (34)
4.2.3动步态足端轨迹 (35)
4.2.4动步态稳定性判断 (45)
4.3静步态规划 (48)
4.3.1静步态稳定性判据 (48)
4.3.2静步态整机协调性 (49)
4.3.3静步态足端轨迹规划 (51)
4.3.4静步态仿真 (54)
4.3.5静步态稳定性判断 (56)
4.4转换步态规划 (57)
4.4.1步态转换中整机协调性规划 (58)
4.4.2转换步态足端轨迹规划 (58)
4.4.3转换步态仿真 (61)
4.5本章小结 (62)
第5章仿生机器狗步态控制实验研究 (63)
5.1仿生机器狗实验系统 (63)
5.1.1仿生机器狗的控制系统 (63)微拟球藻
5.1.2实验系统的基本组成 (65)
5.2仿生机器狗的静步态控制实验 (67)
5.2.1静步态控制实验 (67)
5.2.2静步态实验分析 (68)
5.3仿生机器狗的动步态控制实验 (71)
5.3.1动步态实验 (71)
5.3.2动步态实验分析 (72)
5.4仿生机器狗转换步态控制实验 (74)
黑刚玉磨料5.4.1转换步态实验 (74)
5.4.2转换步态实验分析 (74)
5.5实验问题分析 (76)
5.6本章小结 (77)
第6章总结与展望 (78)

本文发布于:2024-09-22 10:35:53,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/290786.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:步态   机器人   仿生   运动   机器   研究   生物   实验
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议