热加工食品论文:热加工食品中呋喃检测方法及其生成的影响因素研究

热加工食品论文:热加工食品中呋喃检测方法及其生成的影响因素研究
【中文摘要】近年来,热加工食品中呋喃的发现、毒理学、分析检测、形成机理和抑制途径引起了相关领域研究学者的密切关注。对热加工过程中呋喃的分析检测方法、形成机理和影响因素进行研究,从而寻有效的抑制途径,对于食品中呋喃危害的防护和食品安全性研究具有重要意义。本文在建立热加工食品中呋喃的气相谱-质谱联用法的基础上,通过建立葡萄糖模式体系、果糖模式体系、蔗糖模式体系、抗坏血酸模式体系、葡萄糖-甘氨酸模式体系、果糖-甘氨酸模式体系和蔗糖-甘氨酸模式体系,研究pH、温度及加热时间等工艺条件对碳水化合物途径、抗坏血酸途径和美拉德反应途径形成呋喃的影响,通过HS-GC-MS检测分析,应用反应动力学的原理,定量地描述反应的变化和预测反应随pH、温度及加热时间的变化规律,本文的研究结果可以为实际食品体系生产优化加工工艺,并抑制呋喃的产生提供理论基础。现将本文主要研究结果归纳如下:1.本文首次以NaCl溶液作为样品基质,通过自动顶空进样器将样品中的呋喃提取出来,D4-呋喃作为试样内标物,HP-PLOT Q石英毛细管柱气相谱分离,采用选择性离子监测(MS1 SIM)的质谱扫描模式,用质谱来进行定性定量分析熏蒸床,建立了热加工食品中呋喃快速的静态顶空气相谱-质谱联用分析方法。结果表明,呋喃在51200 ng范围内线性良好,相关系数为0.9993;方法的定性检测限(S/N3)0.4 ng/g,定量检测限(S/N10)1.0
ng/g;不同基质样品中高低加标回收率为86.8%104.7%,相对标准偏差(RSD)均小于10%。采用此方法对我国11种市售热加工食品(133)进行了检测,呋喃检出浓度在90℃时,以上溶液开始产生大量的呋喃,聚氨酯浆料然而,蔗糖溶液当加热温度>130℃时,才开始产生少量的呋喃。葡萄糖和果糖在酸性溶液中最难生成呋喃,而蔗糖和抗坏血酸在碱性条件下加热生成的呋喃含量最低。此外,加热时间可以促进碳水化合物途径和抗坏血酸途径生成呋喃。3.通过建立葡萄糖-甘氨酸模式体系、果糖-甘氨酸模式体系和蔗糖-甘氨酸模式体系,研究pH、加热温度及加热时间等工艺条件对美拉德反应途径形成呋喃的影响,通过HS-GC-MS检测分析,定量地描述反应的变化和预测反应随pH、加热温度及加热时间的变化规律。结果表明,在≤110℃的加热温度范围内,pH对葡萄糖偷钱猫存钱罐-甘氨酸和果糖-甘氨酸溶液生成呋喃的作用不显著;但是当加热温度>110℃时,葡萄糖-甘氨酸溶液在pH=7.00体系中产生的呋喃显著高于在pH=9.40体系中生成的呋喃含量,而在pH=9.40体系中生成的呋喃含量又远大于pH=4.18体系中生成的呋喃含量,由此可知,葡萄糖-甘氨酸溶液在酸性体系中最难生成呋喃。关于果糖-甘氨酸模型,当加热温度≤110℃时,无论溶液体系是酸性、中性、还是碱性,均不会产生大量的呋喃;当温度>110℃时,在不同的温度范围内,pH对果糖-甘氨酸溶液生成呋喃起到不同的影响作用,由此可知,pH和加热温度对果糖-甘氨酸形成呋喃起到综合的影响作用。关于蔗糖-
甘氨酸模型,与葡糖糖-甘氨酸模型和果糖-甘氨酸模型相比,在相同的处理条件下,蔗糖-甘氨酸产生的呋喃含量远低于葡萄糖-甘氨酸和果糖-甘氨酸生成的呋喃含量,当加热温度>120℃时,蔗糖-甘氨酸才开始产生少量的呋喃,并且在碱性体系下生成的呋喃含量最低。此外,加热时间可以促进葡萄糖-甘氨酸、果糖-甘氨酸、蔗糖和抗坏血酸-甘氨酸模型生成呋喃。根据目前的研究进展,可从以下几个方面考虑减少或抑制呋喃的途径:第一,通过改变工艺条件,抑制呋喃产生的一些关键中间产物(2,3-二酮古洛糖酸(DKG)、丁醛唐衍生物、4-羟基-2-丁烯)的形成或转化;第二,在反应的最后阶段控制条件,使其向有利于其他小分子物质形成的方向转化,如添加抗氧化剂等;第三,抑制美拉德反应中的关键步骤如Schiff碱的形成、Streker降解、N-糖苷途径和脱羧Amadori产物的β-消去反应等。因此,本研究可以作为进一步减少或抑制热加工过程中呋喃生成的研究基础,有助于为实际食品体系生产优化加工工艺,并抑制呋喃的产生提供理论参考和技术支持。通过优化热加工条件可以更直接地达到抑制呋喃的效果,因此,可以根据本章研究结果僧侣鞋,控制合适的加热温度、缩短加热时间、合理使用柠檬酸等pH调节剂调节体系pH,以达到减少或抑制呋喃产生的效果。但在实际应用中,应注意尽可能在保持食品原有风味和感官特性的前提下优化热加工参数。此外,碳水化合物通常是食物中的必要添加物,根据本章的研究结果,还可以从优化食物配方的角度来减少呋喃的产生。
【英文摘要】In recent years, the occurrence, toxicity, determination, formation and elimination of furan in foods have attracted considerable attention throughout the world. Based on headspace gas chromatography mass spectrometry method (HS-GC-MS), this study was to quantify furan levels in model reaction samples and investigate the effects of pH, heating temperature, and heating time on furan formation from the solutions of glucose, fructose, sucrose, ascorbic acid, glucose-glycine, fructose-glycine and sucrose-glycine. The main results in the paper are mentioned as follows:1. A rapid, sensitive, automated and reliable headspace gas chromatography-mass spectrometry method (HS-GC-MS) for the determination of furan in heat-processed foods on the Chinese market was developed and validated. The addition of d4-furan as the internal standard was used for quantification. The conditions of sample preparation, headspace sampling and GC separation were optimized to enhance sensitivity during GC-MS analysis. Validation was carried out in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), precision and accuracy. Good linearity ranging from 5 to 1200 ng was obtained. The relative standard deviations (RSD) from 2.9 to 4.5%, and the recovery rates from 86.8 to
104.7% for three different matrixes showed good precision and accuracy of the method. Validation results demonstrated that the established method was suitable for determination of furan in foods. Finally, the developed HS-GC-MS method was applied to the analysis of furan in several Chinese food commodities from local markets, and furan levels ranging from lower than the detection limit to 210.7 ng g-1 were found.2. The aim of this study was to quantify furan levels in model reaction samples using headspace gas chromatography mass spectrometry method (HS-GC-MS) and investigate the effects of pH, temperature, and heating time on furan formation. Results showed that pH, heating temperature and heating time affected profoundly furan formation from solutions of glucose, fructose, sucrose and ascorbic acid in model systems due to thermal processing. For glucose, fructose and ascorbic acid solutions, heating temperature (90) may not lead to significant levels of furan regardless of pH, while at heating temperature (>90), these solutions produced considerable levels of furan. However, for sucrose solution, higher heating temperature (>130) was needed to form furan. Additionally, for glucose and fructose, less furan was formed at pH 4.18 than at pH 7.00 a
nd pH 9.40, but for sucrose and ascorbic acid, the least amount of furan was formed at pH 9.40. In addition, the furan levels were observed to enhance with heating time in all four model systems. Thus, the results from this study may be regarded as a research basis for further reducing or eliminating the formation of furan in heat processed foods.3. The objective of this study was to investigate the formation of the contaminant furan analyzed by using headspace gas chromatography mass spectrometry method (HS-GC-MS) in equimolar reaction model systems based on sugars and glycine, and study the effect of pH, temperature, and heating time on furan formation by Maillard-type reactions. The glucose-glycine, fructose-glycine, and sucrose-glycine heating systems were compared. During the same conditions, the amounts of furan formed in fructose-glycine model system were always higher than those in glucose-glycine system, while significantly higher levels of furan were formed in glucose-glycine system as apposed to those in sucrose-glycine system. Additionally, results indicated that pH, heating temperature and heating time affected profoundly furan formation upon heating. Therefore, the results from this study may be regarded as a pioneer contribution to the fur
ther reduction or elimination of the furan in heat processed foods by modification of processing conditions and change of heat processing methods.
【关键词】热加工食品 呋喃 HS-GC-MS 动力学模型
【英文关键词】Heat-processed foods      Furan      HS-GC-MS      Kinetic model systems
【目录】热加工食品中呋喃检测方法及其生成的影响因素研究摘要3-6ABSTRACT6-71 绪论12-251.1 食品中呋喃的发现与来源12-141.2 呋喃的毒理学14-161.2.1 呋喃的代谢151.2.2 呋喃的毒性151.2.3 呋喃的遗传毒性15-161.3 热加工食品中呋喃的形成途径16-201.3.1 通过氨基酸的降解形成呋喃171.3.2 通过碳水化合物的降解形成呋喃17-181.3.3 通过抗坏血酸形成呋喃18-191.3.4 通过多不饱和脂肪酸的热氧化形成呋喃19-201.4 食品中呋喃的检测方法20-221.4.1 顶空进样-气相谱-质谱法211.4.2 固相微萃取-气相谱-质谱法21-221.5 本研究的目的意义、主要研究内容和创新性22-251.5.1 本研究的目的意义22-231.5.2 本研究主要内容231.5.3 本研究的主要创新点23-252 食品中呋喃分析方法的建立25-422.1 引言25-262.2 实验部分26-292.2.1 仪器262.2.2 试剂26-272.2.3 分析条件27-282.2.4 标准溶液和实际样品测定282.2.5 定性定量28-292.3 结果与讨论29-412.3.1
空条件的优化29-312.3.2 谱柱及分流比的选择312.3.3 标准曲线、线性范围与检测限31-322.3.4 方法的加标回收率与精密度32-332.3.5 实际样品测定33-412.4 本章小结41-423 碳水化合物产生呋喃的基础研究模型的建立42-503.1 引言423.2 实验部分42-443.2.1 仪器与试剂42-433.2.2 实验方法43-443.3 结果与分析44-483.3.1 pH和加热温度对各种前体物质生成呋喃的影响44-473.3.2 加热时间对各种前体物质生成呋喃的影响47-483.4 讨论48-493.5 本章小结49-504 抗坏血酸产生呋喃的基础研究模型的建立50-564.1 引言50-514.2 实验部分51-524.2.1 仪器与试剂514.2.2 实验方法51-524.3 结果与分析52-544.3.1 pH、加热温度对抗坏血酸模式体系生成呋喃的影响52-534.3.2 加热时间对抗坏血酸生成呋喃的影响53-544.4 讨论54-554.5 本章小结55-565 美拉德反应途径生成呋喃的基础研究模型的建立56-645.1 引言56-575.2 实验部分57-585.2.1 仪器与试剂575.2.2 实验方法57-585.3 结果与分析58-615.3.1 pH和加热温度对各种糖-甘氨酸模式体系生成呋喃的影响59-615.3.2 加热时间对各种糖-甘氨酸模式体系生成呋喃的影响615.4 讨论61-635.5 本章小结63-646 结论与展望64-676.1 结论64-666.2 进一步研究方向密钥索引66-67致谢67-68参考文献68-74攻读学位期间的研究成果74

本文发布于:2024-09-24 18:13:52,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/283452.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:呋喃   生成   食品   体系
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议