柱层析的吸附剂和洗脱剂

柱层析与薄层层析的吸附剂和洗脱剂
(Swrl20041219据网络资源整理 支持小木虫
根据待分离组分的结构和性质选择合适的吸附剂和洗脱剂
是分离成败的关键。
1.吸附剂的要求
①对样品组分和洗脱剂都不会发生任何化学反应,在洗脱剂中也不会溶解。
②对待分离组分能够进行可逆的吸附,同时具有足够的吸附力,使组分在固定相与流动相之间能最快地达到平衡。
③颗粒形状均匀,大小适当,以保证洗脱剂能够以一定的流速(一般为1。5mL。min—1)通过谱柱。
④材料易得,价格便宜而且是无的,以便于观察。
2、常用吸附剂的种类
氧化铝、硅胶、聚酰胺、硅酸镁、滑石粉、氧化钙(镁)、淀粉、纤维素、蔗糖和活性炭等。
3、几种常见吸附剂的特性
1)氧化铝:市售的层析用氧化铝有碱性、中性和酸性三种类型,粒度规格大多为100~150目.
碱性氧化铝(空心钢管pH9—10):适用于碱性物质(如胺、生物碱)和对酸敏感的样品,这种吸附剂能引起被吸附的醛、酮的缩合、酯和内酯的水解、醇羟基的脱水、乙酰糖的去乙酰化等不良副反应。所以,这些化合物不宜用碱性氧化铝分离。
酸性氧化铝(pH3。5—4。5):适用于酸性物质如有机酸、氨基酸等以及素和醛类化合物的分离.
中性氧化铝(pH7—7。5):适用于醛、酮、醌、苷和硝基化合物以及在碱性介质中不稳定的物质如酯、内酯等的分离,也可以用来分离弱的有机酸和碱等。
(2)硅胶:硅胶是硅酸的部分脱水后的产物,其成分是SiO2·xH2O,又叫缩水硅酸。柱谱用硅胶一般不含粘合剂。
(3)聚酰胺:谱用聚酰胺主要又锦纶6(聚己内酰胺)和锦纶66(聚己二酰己二胺)两种,分子量一般在16000~20000,其亲水性和亲脂性均较好,因此既可分离水溶性成份,也可分离脂溶性成分。可溶于浓盐酸、甲酸及热的乙酸、甲酰胺和二甲基甲酰胺中;微溶于乙酸和苯酚等;不溶于醇、氯仿、丙酮、乙醚、苯等;对碱稳定,对强酸可水解.
聚酰胺谱的原理:兼具吸附谱和分配谱的功能。采用强极性洗脱剂时主要为吸附谱——正相谱;采用弱极性洗脱剂时主要为分配谱——反相谱.
分离对象:能与聚酰胺形成氢键的化合物,如酚类、酸类、醌类、硝基化合物及含羟基、氨基、亚氨基的化合物及腈和醛等类化合物。
聚酰胺在水中吸附能力的规律:形成氢键的基团(如:酚经基、按基、酪基、硝基等)越多,则吸附力越强。如:丁二酸>丁酸 形成氢键的位置与吸附力有很大关系。对位、间位酚羟基使吸附力增大,邻位使吸附力减小.芳香核、共轭双键多者吸附力大,少者吸附人小.若形成分了内氢键,则使化合物的吸附力减小。
4)硅酸镁:中性硅酸镁的吸附特性介于氧化铝和硅胶之间,主要用于分离甾体化合物和某些糖类衍生物。为了得到中性硅酸镁,用前先用稀盐酸,然后用醋酸洗涤,最后用甲醇和蒸馏水彻底洗涤至中性。防漏杯盖
4、实验操作
吸附剂用量的确定→柱子的选择→装柱→柱留体积的测量→加样或拌样→洗脱→分部收集→检测→合并→浓缩
氧化铝:一般选择中性,粒度150~200目,超过220目需加压;一般用量1g样品/2050g,特例1g样品/100200g
硅胶:吸附谱——1g样品/2050g ,特例1g样品/5001000g,用前最好12024h,可不做活性测定。分配谱——1g样品/100~1000g,特例1g样品/10000g
谱柱的选择:
有玻璃柱和不锈钢柱两种,一般不使用有机玻璃柱,实验室常用玻璃柱;径长比一般为1:1
01 :20,特例1:40;内壁光滑均匀,上下粗细一样,管壁无裂缝,活塞密封良好;根据吸附剂用量(体积)确定柱子的大小,一般吸附剂应填充到柱子体积的1/41/5左右。
装柱:有干装法和湿装法两种.
干装法
在下端减压抽气的同时,将吸附剂通过长径漏斗缓缓到入柱内.
湿装法
①准确加入一定体积的溶剂,然后缓慢加入吸附剂,必要时可轻敲柱壁,排除多余溶剂,计算主留体积;
②准确量取一定体积的溶剂倒入称量好的吸附剂,间歇性搅拌数次,静置过夜,次日在搅拌下装柱,计算主留体积。
加样:
gff全贴合技术
①将样品溶于合适的溶剂,在不扰动吸附剂层面的情况下,加到柱体上面。最后在用少量清洁溶剂对主壁洗涤23次;
②将样品溶于合适的溶剂后,在搅拌下加入样品量35倍的吸附剂,晾干至粉末状,然后在不扰动吸附剂层面的情况下,加到柱体上面。
洗脱:
必须注意在洗脱的过程中,尤其是开始阶段,不能扰动层面。洗脱速度一般为每分钟流出1/200柱留体积左右。对于梯度洗脱需注意标记不同溶剂的分界管号.分部收集:一般每管收集1/20 1/10柱留体积
检测:
确定目标物的位置及纯化情况
薄层谱或纸谱检测;
气相谱或液相谱检测;
合并:成分相同或相似的收集液合并,交叉部分单独收集。
浓缩:旋转薄膜蒸发;确保烧瓶干燥干净。
5、展开剂的极性规律
单一溶剂的极性大小顺序
石油醚<环己烷<四氯化碳<三氯乙烯<苯<甲苯<二氯甲烷<氯仿<乙醚<乙酸乙酯<乙酸甲酯<丙酮<正丙醇<甲醇<吡啶<乙酸
混合溶剂的极性顺序:
  苯∶氯仿(1+1)< 环己烷∶乙酸乙酯(8+2)<氯仿∶丙酮(95+5)<苯∶丙酮(9+1)<苯∶乙酸乙酯(8+2)<氯仿∶乙醚(9+1)<苯∶甲醇(95+5)<苯∶乙醚(6+4)<环己烷∶乙酸乙酯(1+1)<氯仿∶乙醚(8+2)<氯仿∶甲醇(99+1)<苯∶甲醇(9+1)<氯仿∶丙酮(85+15)<苯∶乙醚(4+6)<苯∶乙酸乙酯(1+1)<氯仿∶甲醇(95+5)<氯仿∶丙酮(7+3)<苯∶乙酸乙酯(3+7)<苯∶乙醚(1+9)<乙醚∶甲醇(99+1)<乙酸乙酯∶甲醇(99+1苯∶丙酮(1+1)<氯仿∶甲醇(9+1
选择展开剂,要依据溶剂极性和他们的混溶性,溶剂对被分析物的溶解性,以及被分析物的结构。
溶剂极性参数表
环已烷 :-0.2、石油醚(Ⅰ类,30~60℃)、 石油醚(Ⅱ类,60~90显示器自动开关机℃)、正已烷:0。0、甲苯:2。4、二甲苯:2。5、苯:2。7、二氯甲烷:3.1、异丙醇:3。9、正丁醇:3.9 、四氢呋喃:4。0、氯仿:4。1、乙醇:4。3、乙酸乙酯:4。4、甲醇:5。1、丙酮:5.1、乙腈:5。8、乙酸:6。0、水:10.2
关于溶剂混溶性,一般根据相似相溶原则,需要注意,极性相差大的不混溶,比如正己烷与甲醇.多元展开剂,主体的两种溶剂不能混溶,就需要通过第三种溶剂来调和.比如:石油醚、正庚烷、正已烷、戊烷、环已烷和甲醇、水之类的。
一般正相谱,固定相为极性,被分析物质的极性越大,需要极性更大的展开剂。 了解被分析物的极性可以通过分析其结构获得,很难获得它的极性指数。物质分子化学结构中,通常由较极性部分和非极性部分两部分。随着极性基团部分的增加,总体的极性就增加,展开剂极性也增加了.
相应展开剂分别为:正己烷ito粉--乙醚——冰醋酸 (5:5:0.1)、苯——冰醋酸—-甲醇(30:1:3)、氯仿—-甲醇--甲酸(9:1: 0.5)、石油醚—-乙酸乙酯-—甲酸(3:6:1)、乙酸丁酯转轴-—甲酸-—(7:2.5:2.5)。(由于薄层板、比移值不同的原因,展开剂极性比较是相对的,并非绝对的后者大于前者).
不同化合物极性情况及其对应的展开剂
极性较小的挥发性物质。这类化合物,以石油醚、正构烷和苯为体积百分数比较大的溶剂,
通常起溶解和分离化合物的作用,而用乙酸乙酯为调节Rf(比移值)的溶剂.为了减少拖尾之类其他相似相溶原则以外的影响,适当加入添加剂,如有机酸或者有机碱。
极性较小的不挥发性物质.这类物质展开剂极性比极性较小的挥发性物质洗脱力强一些,因为这类物质极性小的母核大,而极性大的基团通常可以形成氢键,比如羧酸、羟基。母核分子量减小、母核结构中不饱和健的增加(尤其是出现苯环),极性基团的增加,都使极性增加,展开剂极性也增大.这个范围内的物质很多,一般展开剂大百分数的溶剂可以从环己烷、甲苯、二甲苯、苯、氯仿的顺序,按照极性要求选择。这里注意,异丙醇、正丁醇极性指数也比较小,在这范围的化合物很少用,因为粘性大、展开慢,造成斑点扩散;另外,羟基的氢键作用也是不利因素。调节Rf值的溶剂,从乙酸乙酯、甲醇、丙酮、乙醇。挥发性物质也有很多带羰基、羟基的,但从它的挥发性就可以明白,分子间作用力不强。另外,母核与石油醚、正构烷和苯的结构差异小,估计更容易脱离硅胶吸 附,更快进入溶剂中,而不需要通过提高展开剂的极性。
存在糖的多羟基结构。展开剂中使用极性大的有机溶剂(氯仿、乙酸乙酯、甲醇、正丁醇)和水。乙酸和甲酸的使用,一方面增大展开剂极性,另外也可以抑制硅胶羟基的作用,减少拖尾现象的发生。由于混溶性和硅胶耐酸能力的限制,水和酸的使用是有限度的。
极性大的小分子有机酸。没食子酸:氯仿—-醋酸乙酯—-甲酸 (5:4:1)。苯乙烯母核结构的极性本身比较大,另外有酚羟基和羧酸基团,个别有多羟基配基。
含氮有机物。由于NH2硅醇基的作用很强,在强极性展开剂加有机酸、有机碱扫尾。对于极性化合物,使用正丁醇对斑点扩散影响较小,因为化合物和硅胶的作用强。
有机合成中展开剂的选择
选择适当的展开剂是首要任务。一般常用溶剂按照极性从小到大的顺序排列大概为:石油醚正己烷<乙醚<THF<乙酸乙酯丙酮乙醇甲醇.使用单一溶剂,往往不能达到很好的分离效果,往往使用混合溶剂通常使用一个高极性和低级性溶剂组成的混合溶剂,高极性的溶剂还有增加区分度的作用,展开剂的比例要靠尝试.一般根据文献中报道的该类化合物用什么样的展开剂,就首先尝试使用该类展开剂,然后不断尝试比例,直到到一个分离效果好的展开剂.
展开剂的选择条件:①对的所需成分有良好的溶解性;②可使成分间分开;③待测组分的Rf0。2~0.8之间,定量测定在0.3~0。5之间;④不与待测组分或吸附剂发生化学反应;⑤沸
点适中,黏度较小;⑥展开后组分斑点圆且集中;⑦混合溶剂最好用新鲜配制。 一般来说,弱极性溶剂体系的基本两相由正己烷和水组成,再根据需要加入甲醇、乙醇,乙酸乙酯来调节溶剂系统的极性;中等极性的溶剂体系由氯仿和水基本两相组成,由甲醇、乙醇,乙酸乙酯等来调节;强极性溶剂,由正丁醇和水组成,也靠甲醇、乙醇,乙酸乙酯等来调节,适合于极性很大的生物碱类化合物的分离。
一般把两种溶剂混合时,采用高极性/低极性的体积比为1/3的混合溶剂.如果有分开的迹象,再调整比例(或者加入第三种溶剂),达到最佳效果;如果没有分开的迹象(斑点较拖),最好是换溶剂.对于在硅胶中这种酸性物质上易分解的物质,在展开剂里往往加一点点三乙胺、氨水、吡啶等碱性物质来中和硅胶的酸性。(选择所添加的碱性物质,还必须考虑容易从产品中除去,氨水无疑是较好的选择.)

本文发布于:2024-09-24 12:24:34,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/280991.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:极性   溶剂   分离   化合物   物质   色谱
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议