管壳式换热器设计 课程设计

河南理工大学课程设计
管壳式换热器设计
                  学    院:机械与动力工程学院
                  专    业:热能与动力工程专业
                  班    级:11-02班
                  学    号:
                  姓    名:
                  指导老师:

                  小组成员:
第一章 设计任务书
    煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140冷却冷却到40℃的管壳式换热器,其处理能力为万寿菊粉10t/h,且允许压强降不大于100kPa
设计任务及操作条件
    1、设备形式:管壳式换热器
    2、操作条件
      (1)煤油:入口温度140℃,出口温度40℃
      (2)冷却水介质:入口温度26℃,出口温度40℃
第二章 管壳式换热器简介
管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。
王水提金
强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。
管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。
在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。
管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。
由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,以消除或减少热应力。根据所采用的补偿措施,管壳式换热器可以分为以下几种:固定管板式换热器、浮头式换热器、U形管式换热器、双重管式换热器及填料函式换热器。
第三章 设计方法及设计步骤
在设计换热器时,如果只作简单估算,或盲目加大传热面积的安全系数就会造成浪费。只有进行比较详细的计算,才能使投入运行的热交换器,在安全和经济方面得到可靠保证。
换热器一般的设计方法及设计步骤如下:
(1)根据设计任务搜集有关的原始资料,并选定热交换器类型等。
(2)确定定性温度,并查取物性数据。
(3)由热平衡计算热负荷及热流体或冷流体的流量。卡片式u盘
(4)选择壳体和管子的材料。
(5)选定流动方式,确定流体的流动空间。丸药制作
(6)求出平均温差。
(7)初选传热系数K0,并初计算传热面积方形磁铁F
>盐酸储存罐

本文发布于:2024-09-23 04:27:16,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/267853.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:传热   流体   热交换器   管壳   管束   设计   流动   空间
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议