海洋波浪能

摘要:随着世界能源日趋紧张,波浪发电作为一种新能源的来源,受到世界各国的重视。波能转换技术日趋成熟,日、英、挪威等国建造了若干座不同类型的波浪发电站。介绍了世界主要国家的波力发电技术进展及主要波能装置并分析了波浪能研究与利用的发展方向和可能遇到的问题。
关键词:能源紧缺    海洋波浪能  能源开发
引言
随着世界经济的发展、人口的激增、社会的进步,人们对能源的需求日益增长。占地球表面积70%的广阔海洋,集中了97%的水量,蕴藏着大量的能源,其中包括波浪能、潮汐能、海流能、温差能、盐差能等。其中,波浪能由于开发过程中对环境影响最小且以机械能的形式存在,是品位最高的海洋能。据估算,全世界波浪能的理论值约为109kW量级,是现在世界发电量的数百倍,有着广阔的商用前景,因而也是各国海洋能研究开发的重点。自20世纪70年代世界石油危机以来,各国不断投入大量资金人力开展波浪能开发利用的研究,并取得了较大的进展。日、英、美、澳等国家都研制出应用波浪发电的装置,并应用于波浪发电中。我国对波浪能的研究、利用起步较晚,目前我国东南沿海福建、广东等地区已在试验一些波
y型钢浪发电装置。
一、波浪发电技术的进展
波浪发电是波浪能利用的主要方式,波浪能利用装置的种类繁多,关于波能转换装置的发明专利超过千项。这些装置主要基于以下几种基本机理,即利用物体在波浪作用下的振荡和摇摆运动;利用波浪压力的变化;利用波浪的沿岸爬升将波浪能转换成水的势能等。经过20世纪70年代对多种波能装置进行的实验室研究和80年代进行的海况试验及应用示范研究,波浪发电技术己逐步接近实用化水平,研究的重点也集中于4种被认为是有商品化价值的装置,包括振荡水柱式装置、摆式装置、振荡浮子式波能转换装置和收缩波道式波能转换装置。
1、振荡水柱式装置
振荡水柱式波浪能发电技术(OWC)也称为空气透平式波浪能发电技术,是目前应用最广泛的波浪能发电技术,在国内也有较多振荡水柱式波浪能试验电站在运行。
振荡水柱型装置主要有一个气室,由一个空箱构成,在它淹没于水面以下部分有一个开口,
在气室上部有气流通道(空气出入口)。波浪向着空箱移动,当波峰接近空箱前壁时,水进入空箱,推动箱内水位上升,上升的水位使箱内气压增加,气室内空气通过出入孔排出,由于气孔狭小,气体高流速喷出,见图1左图。在波谷接近空箱前壁时,水从空箱抽出,箱内水位下降,下降的水位使箱内气压降低,外面空气通过出入孔高速进入气室,见图1右图,流出流进的气体将推动涡轮机旋转,这就把波浪能转换为机械能。
气室内水面有一个固定的波动频率,冲入气室的水碰到气室后壁反射回来,如能和下降水面同向,将会与波浪共振,选择合适的气室尺寸可以使室内水面振荡与外面波浪频率相近,共振的水面波动幅度会远高出波浪的幅度,大大提高气体的流量从而提高系统效率。
在气流通道内安装气动涡轮机,进出的气流就会推动涡轮机旋转,涡轮机带动发电机发出电来,这就是振荡水柱式波浪能发电的原理。由于气流是往复的,需采用一种在双向气流作用下均能同向旋转的涡轮机,有关这种涡轮机的结构与原理将在下一节介绍。
图1振荡水柱式波浪能采集基本原理
上面介绍的振荡水柱式波浪能发电装置是靠岸边安装,称为固定式(靠岸式)安装;振荡水柱式波浪能发电装置也可以漂浮在海面上,称为漂浮式(离岸式、近岸式)发电装置。图2左图是前面进水的漂浮式振荡水柱式波浪能发电装置;图2右图是下面进水的漂浮式振荡水柱式波浪能发电装置,前面进水方式与上面介绍的靠岸式工作原理一样,下面进水的工作原理也基本相同
麦弗逊式独立悬架
图2 漂浮式振荡水柱波浪能发电装置
图3是这两种漂浮式振荡水柱式波浪能发电装置的照片
图3 漂浮式振荡水柱波浪能发电装置照片
下面介绍一种用得较多的振荡水柱式波浪能发电装置的基本结构,这是一种固定式(靠岸式)振荡水柱式波浪能发电装置。
图1是靠岸式振荡水柱式波浪能发电装置的结构示意图,在靠海岸用混凝土浇筑成气室箱体。气室前壁下方与海水相连,气室后壁上方有气流进出通道孔,连接涡轮机。当海浪向气室箱体推进时,气室内水面就会振荡,进出气流通道涡轮机旋转,带动发电机发出电来。
图4 靠岸式振荡水柱波浪能发电装置模型
图5是靠岸式振荡水柱波浪能发电装置的照片,这两个照片是从地面上拍摄的,可以看到气室箱体的顶部与涡轮机
图5 靠岸式振荡水柱波浪能发电装置地面照片
振荡水柱型装置的优势就是装置本身的简洁和坚固,机电部分在海面以上不接触海水,故障率地,维护方便。缺点是建造成本高,转换效率低。
毛毯清洗剂2、摆式波浪发电原理
2.1、摆式波浪能发电装置构成 常见的摆式波浪能发电装置由摆板、转轴、传动系 统等部分组成。波浪垂直作用于摆板,摆板绕摆轴前后摆动带动传动系统的活塞杆运动,进而将摆板俘获的波能转换为传动系统的机械能,最终将机械能转换为电能。摆式波浪发电装置构成如图1所示
2.2、摆式波浪能发电的液压转换原理
如图2所示,摆式波浪能发电装置由水室摆板机构、机电转换机构、发配电机构三大部分组成。水室摆板机构将波能转换成机械能,机电转换机构将机械能转换成电能,发配电机构实现电力输送过程。其中,水室摆板机构是机械能和液压能转换的关键部件。
由图2可见,当海洋波浪进入沉箱后,由于后墙的反射作用,产生两个相反方向的水波相互叠加,在水室内形成驻波,转变为水粒子的起伏运动,推动安装在水室驻波节点上的摆板绕水平支承来回摆动。摆上端与油缸中活塞杆活动联结,推动活塞在油缸中往复移动。于是,油缸活塞类似一个液压泵,提供液压系统压力油。 当摆板推动活塞向右移时,油箱的油经单向阀1进入油缸左腔,右腔压力油经单向阀4、油路和节流阀进入液压马达,驱动液压马达运转,输出转矩或直接带动发动机发电。反之,活塞向左,油经单向阀2进入油缸右腔,左腔中的压力油经单向阀3、油路和节流阀进入液压马达,驱动液压马达连续旋转,或作功或发电。 摆式吸能装置靠垂直于波浪中摆板被波浪推动做功而吸收波浪能转化成摆板
注塑机联网的机械能,但是由于摆板的双向摆动,因此会降低其吸收效率,一般在摆板后建造一座后墙加以弥补。在摆式波浪发电站中,吸能装置是由水室与摆板组成的,水室的作用是聚波形成立波,其实质是增加波能密度,摆板则是与波浪直接接触的部分,波浪通过摆板做功,转化成机械能。 1.3摆式波浪能发电装置的转换效率 波浪能量转换效率,是指摆式波力电站摆轴处输 出的功率与波能的功率之比。它又分为两个部分,一个是摆板所受的波浪力矩对摆轴做的功与波能之比,称为前导波能转换效率,另一个是摆轴处负载(反力矩)对摆轴做的功与摆板所受的波浪力矩对摆轴做的功之比,称为摆式波力电站的吸能效率(或称吸能装置的波能转换效率)。 摆式波能发电装置的波能转换效率受很多因素影响,主要有水深、波高、波周期等波况条件因素和摆板距后墙距、摆轴输出扭矩(负载)等结构形式自身因素,平均的波能转化效率如图3所示:

本文发布于:2024-09-22 12:38:41,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/245133.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:装置   发电   转换   摆板   波能   水柱
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议