GPS基本测量原理

第一章 GPS基本测量原理
GPSGlobal Positioning System)即全球定位系统,是由美国建立的一个卫星导航定位系统,利用该系统,用户可以在全球范围内实现全天候、连续、实时的三维导航定位和测速;另外,利用该系统,用户还能够进行高精度的时间传递和高精度的精密定位。
第一节  GPS的组成
GPS计划始于1973 ,已于1994年进入完全运行状态(FOC)GPS的整个系统由空间部分、地面控制部分和用户部分所组成:
空间部分
GPS的空间部分是由24GPS工作卫星所组成,这些GPS工作卫星共同组成了GPS卫星星座,其中21颗为可用于导航的卫星,3颗为活动的备用卫星。这24颗卫星分布在6个倾角为55°的轨道上绕地球运行。卫星的运行周期约为12恒星时。每颗GPS工作卫星都发出用于导航定位的信号GPS用户正是利用这些信号来进行工作的。
控制部分
GPS的控制部分由分布在全球的由若干个跟踪站所组成的监控系统所构成,根据其作用的不同,这些跟踪站又被分为主控站、监控站和注入站。主控站有一个,位于美国克罗拉多(Colorado)的法尔孔(Falcon)空军基地,它的作用是根据各监控站对GPS的观测数据,计算出卫星的星历和卫星钟的改正参数等,并将这些数据通过注入站注入到卫星;同时,它还对卫星进行控制,向卫星发布指令,当工作卫星出现故障时,调度备用卫星,替代失效的工作卫星工作;另外,主控站也具有监控站的功能。监控站有五个,除了主控站外,其它四个分别位于夏威夷(Hawaii)、阿松森岛(Ascencion)、迭哥伽西亚(Diego Garcia)、卡瓦加兰(Kwajalein),监控站的作用是接收卫星信号,监测卫星的工作状态;注入站有三个,它们分别位于阿松森岛(Ascencion)、迭哥伽西亚(Diego
Garcia)、卡瓦加兰(Kwajalein),注入站的作用是将主控站计算出的卫星星历和卫星钟的改正数等注入到卫星中去。
用户部分
GPS的用户部分由GPS接收机、数据处理软件及相应的用户设备如计算机气象仪器等所组成。它的作用是接收GPS卫星所发出的信号,利用这些信号进行导航定位等工作。 以上这三个部分共同组成了一个完整的GPS系统。
第二节   GPS信号及观测值
GPS信号
  GPS卫星发射两种频率的载波信号,即频率为1575.42MHzL1载波和频率为1227.60HMzL2载波,它们的频率分别是基本频率10.23MHz154倍和120倍,它们的波长分别为19.03cm24.42cm。在L1L2上又分别调制着多种信号,这些信号主要有:
C/A
C/A码又被称为粗捕获码,它被调制在L1载波上,是1MHz的伪随机噪声码(PRN码),其
码长为1023位(周期为1ms)。由于每颗卫星的C/A码都不一样,因此,我们经常用它们的PRN号来区分它们。C/A码是普通用户用以测定测站到卫星间的距离的一种主要的信号。
P
P码又被称为精码,它被调制在L1L2载波上,是10MHz的伪随机噪声码,其周期为七天。在实施AS时,P码与线圈耳机W码进行模二相加生成保密的Y码,此时,一般用户无法利用P码来进行导航定位。
气相程序升温Y
P码。
导航信息
导航信息被调制在L1载波上,其信号频率为50Hz,包含有GPS卫星的轨道参数、卫星钟改正数和其它一些系统参数。用户一般需要利用此导航信息来计算某一时刻GPS卫星在地球轨道上的位置,导航信息也被称为广播星历。
GPS观测值
  在GPS定位中,经常采用下列观测值中的一种或几种进行数据处理,以确定出待定点的坐标或待定点之间的基线向量:
L1载波相位观测值
L2载波相位观测值(半波或全波)
调制在L1上的C/A码伪距
调制在L1上的P码伪距
调制在L2上的P码伪距
L1上的多普勒频移
L2上的多普勒频移
  实际上,在进行GPS定位时,除了大量地使用上面的观测值进行数据处理以外,还经常使用由上面的观测值通过某些组合而形成的一些特殊观测值,如宽巷观测值(Wide-Lane
[4]、窄巷观测值(Narrow-Lane[5]、消除电离层延迟的观测值(Ion-Free[6]来进行数据处理。
第三节   GPS定位的误差源
  我们在利用GPS进行定位时,会受到各种各样因素的影响。影响GPS定位精度的因素可分为以下四大类:
GPS卫星有关的因素
SA
美国政府从其国家利益出发,通过降低广播星历精度( 技术)、在GPS基准信号中加入高频抖动( 技术)等方法,人为降低普通用户利用GPS进行导航定位时的精度。
卫星星历误差
在进行GPS定位时,计算在某时刻GPS卫星位置所需的卫星轨道参数是通过各种类型的星历[7]提供的,但不论采用哪种类型的星历,所计算出的卫星位置都会与其真实位置有所差异,这就是所谓的星历误差。
卫星钟差
卫星钟差是GPS卫星上所安装的原子钟的钟面时与GPS标准时间之间的误差。
卫星信号发射天线相位中心偏差
卫星信号发射天线相位中心偏差是GPS带式输送机传动滚筒卫星上信号发射天线的标称相位中心与其真实相位中心之间的差异。
与传播途径有关的因素
电离层延迟
由于地球周围的电离层对电磁波的折射效应,使得GPS信号的传播速度发生变化,这种变化称为电离层延迟。电磁波所受电离层折射的影响与电磁波的频率以及电磁波传播途径上电子总含量有关。
对流层延迟硬件加速器
由于地球周围的对流层对电磁波的折射效应,使得GPS信号的传播速度发生变化,这种变化称为对流层延迟。电磁波所受对流层折射的影响与电磁波传播途径上的温度、湿度和气压有关。
多路径效应
由于接收机周围环境的影响,使得接收机所接收到的卫星信号中还包含有各种反射和折射信号的影响,这就是所谓的多路径效应。
与接收机有关的因素
接收机钟差
接收机钟差是GPS接收机所使用的钟的钟面时与GPS标准时之间的差异。
接收机天线相位中心偏差
接收机天线相位中心偏差是GPS接收机天线的标称相位中心与其真实的相位中心之间的差异。
接收机软件和硬件造成的误差
在进行GPS定位时,定位结果还会受到诸如处理与控制软件和硬件等的影响。
其它
GPS控制部分人为或计算机造成的影响
由于GPS控制部分的问题或用户在进行数据处理时引入的误差等。
小便冲洗阀数据处理软件的影响
数据处理软件的算法不完善对定位结果的影响。
第四节   基准及坐标系
  一个完整的坐标系统是由坐标系和基准两方面要素所构成的。坐标系指的是描述空间位置的表达形式,而基准指的是为描述空间位置而定义的一系列点、线、面。在大地测量中的基准一般是指为确定点在空间中的位置,而采用的地球椭球或参考椭球的几何参数和物理参数,及其在空间的定位、定向方式,以及在描述空间位置时所采用的单位长度的定义。
一、 坐标系的分类
  正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。在测量中,常用的坐标系有以下几种:
空间直角坐标系
空间直角坐标系的坐标系原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上,且按右手系与X轴呈90°夹角。某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。(见图1

1 空间直角坐标系
空间大地坐标系
空间大地坐标系是采用大地经、纬度和大地高来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角,经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角,大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。

2 空间大地坐标系
平面直角坐标系
平面直角坐标系是利用投影变换,将空间坐标(空间直角坐标或空间大地坐标)通过某种数学变换映射到平面上,这种变换又称为投影变换。投影变换的方法有很多,如UTM投影、Lambuda投影等,在我国采用的是高斯-克吕格投影,也称为高斯投影。
二、 基准
  所谓基准是指为描述空间位置而定义的点、线、面,在大地测量中,在大地测量中,基准是指用以描述地球形状的参考椭球的参数,如参考椭球的长短半轴,以及参考椭球在空间中的定位及定向,还有在描述这些位置时所采用的单位长度的定义。
三、 坐标系变换与基准变换
  GPS测量中,经常要进行坐标系变换与基准变换。所谓坐标系变换就是在不同的坐标表示形式间进行变换,基准变换是指在不同的参考基准间进行变换。
  不同坐标系统的转换本质上是不同基准间的转换,不同基准间的转换方法有很多,其中,最为常用的有布尔沙模型,又称为七参数转换法。
  七参数转换法是:
  设两空间直角坐标系间有七个转换参数―3个平移参数、3个旋转参数和1个尺度参数。

  若:
  为某点在空间直角坐标系A的坐标;
  为该点在空间直角坐标系B的坐标;
  为空间直角坐标系A转换到空间直角坐标系B的平移参数;
  为空间直角坐标系A转换到空间直角坐标系B的旋转参数;
  为空间直角坐标系A转换到空间直角坐标系B的尺度参数。
  则由空间直角坐标系A到空间直角坐标系B的转换关系为:
 
四、智能卡读写器 GPS测量中常用的坐标系统
1. WGS-84
  WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的星历参数就是基于此坐标系统的。
  WGS-84坐标系统的全称是World Geodical System-84(世界大地坐标系-84),它是一个地心地固坐标系统。
  WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS所采用的坐标系统―WGS-72坐标系统而成为GPS的所使用的坐标系统。
  WGS-84坐标系的坐标原点位于地球的质心,Z轴指向BIH1984.0定义的协议地球极方向,X轴指向BIH1984.0的起始子午面和赤道的交点,Y轴与X轴和Z轴构成右手系。
  WGS-84系所采用椭球参数为:
a = 6378137m
f = 1/298.257223563
2. 1954年北京坐标系
  1954年北京坐标系是我国目前广泛采用的大地测量坐标系。该坐标系源自于原苏联采用过的1942年普尔科夫坐标系。
  建国前,我国没有统一的大地坐标系统,建国初期,在苏联专家的建议下,我国根据当时的具体情况,建立起了全国统一的1954年北京坐标系。该坐标系采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:

本文发布于:2024-09-23 02:30:03,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/243941.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:空间   坐标系   坐标   信号
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议