量子调控研究国家重大科学研究计划-国家科技部

附件2:
量子调控研究国家重大科学研究计划
“十二五”专项规划
一、形势与需求
上世纪初量子力学的创立使人类深刻地认识到微观世界存在着丰富的量子效应,极大推动了物理、化学、材料、生物等学科的发展,彻底改变了人类对自然的认知。量子理论的发展导致了以大规模集成电路为基础的计算机技术和以激光为基础的现代通信技术等,带动了全球经济的飞速发展。
摩尔定律预言芯片元件的尺寸在不远的未来将达到经典物理极限,各种量子效应会显现出来并成为普遍现象。因此,基于量子效应的新原理和新方法将成为未来信息技术的重要基础,已经成为当前国际科技界激烈竞争的焦点。
量子调控是在认识量子现象和规律的基础上,通过开发新材料、构筑新结构、发现新物质态以及改变外场条件等手段对量子现象进行调控和开发利用,突破经典调控的极限,建立全新的量子调
—1—
修整机
控技术和量子器件。开展量子调控研究具有重要的前瞻性和重大战略意义,对信息科学技术的发展产生不可估量的影响。将量子信息、关联电子体系、小量子体系和人工带隙体系这些重要领域有机地整合到研究计划中,将推动整个信息产业的技术革命,促进经济和社会的发展。
自量子调控研究计划实施以来,我国在量子调控领域的研究水平显著进步并在相关方向取得了一系列重要突破。
灵性锁实用化量子密码技术和量子通信技术取得了重大进展。首次在商用光纤骨干网中运行了城域量子保密通信网;建立了世界上第一个“量子政务网”;成功研制了国际上首个可升级的全通型量子通信网络——五节点星型实时语音加密量子通信网络;在量子密钥分配速率等方面实现突破,极限传输距离已经达到255公里左右;首次实现了基于诱骗态的3节点光量子电话网;实现了自由空间量子纠缠和量子密钥分发,首次实现16公里远距离自由空间隐形传态实验。
铁基超导研究处于国际前沿。发现了多种新的铁基超导材料,—2—
包括最先报道转变温度超过麦克米兰极限的超导体,最先发现多个最高转变温度纪录的系列铁基超导材料。通过输运性质的系统研究,建立了铁基超导的相图,在配对机制等重要科学问题上取得突破。
拓扑绝缘体研究位居国际前列。首次发现了室温三维强拓扑绝缘体;成功实现拓扑绝缘体的门电压调
控;从理论上预言了一类新的拓扑绝缘体——磁性拓扑绝缘体,可在没有外磁场的情况下实现量子霍尔效应;利用高压手段观察到拓扑绝缘体中的超导态。
光学超晶格的研究从非线性光学拓展到量子光学。利用多重准相位匹配,在光学超晶格中制备出多光束连续变量和路经纠缠的高维纠缠态,实现了纠缠态空间模式的调控,观察到相应的亚波长干涉效应。
氮化硅结合碳化硅制品
“十一五”期间,量子调控研究在实用化量子密码技术和量子通信技术、铁基超导和拓扑绝缘体等研究方向取得了一系列国际领先的重要研究成果。在量子计算、冷原子体系、关联电子新材料开发和量子信息技术的集成等方面还有待进一步加强。
—3—
北斗接收机二、总体思路与发展目标
(一)总体思路
继续保持我国在实用化量子密码技术和量子通信技术、铁基超导和拓扑绝缘体等研究领域的领先水平。同时,围绕国家重大战略需求和重大科学前沿问题,以功能化集成和实用化为导向,积极推动原始创新研究,进一步加强新材料、新物质态和新原理原型器件的研究力度,鼓励仪器设备研制等研究
手段的创新。
(二)发展目标
结构光三维扫描仪
在新物质态和新原理原型器件的研究方面取得重要突破,探索和发现若干全新的关联电子体系材料、小量子体系材料和人工带隙材料,推进量子通信技术的实用化和量子技术标准与协议的制定,开发具有自主知识产权的关联材料设计和计算软件平台。在量子信息、关联电子体系、小量子体系和人工带隙体系等方面取得国际一流水平的成果,培养一批具有国际竞争力的研究团队和领军人才,建立若干国际一流水平的量子调控研究基地。
三、主要任务
冷凝器设计—4—
(一)量子信息
基于光子的量子信息处理。制备单光子源,研究用于量子信息的各种优质光源,在频谱、亮度、纠缠度以及可控性等方面获得突破。探索基于连续和分离变量的光子系统的量子信息处理技术,研究非经典光子源的测量、基于各种光学测量的量子态的重构和新型单光子探测器件集成等。开展实现量子信息在光子与物质界面间的相干控制研究。
基于固态系统的量子信息处理。研究固态系统中的退相干机制及抑制机理,基于量子点的固体量子信息元器件和量子芯片。研制基于量子点的高品质单光子源和确定性纠缠光源,探索基于量子点的新型量子存储。研究基于超导约瑟夫森结微纳结构的量子信息处理,与腔共振耦合的超导量子比特等。研究基于掺杂的固态和分子团簇体系的量子信息,以及各种量子计算方案及关键技术。
基于冷原子(离子)、分子的量子信息处理。研究冷原子系综中的量子信息存储,制备基于确定性原子操控的量子寄存器,发展量子关联和纠缠带来的超越标准量子及极限的测量技术。研究极性
—5—

本文发布于:2024-09-22 22:23:36,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/221902.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:量子   研究   技术   调控   实现   材料   信息   体系
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议