电化学储能体系的特点及其未来发展的思考

电化学储能体系的特点及其未来发展的思考
摘要:电化学储能的发展史,是一部材料科技的进步史,工艺的改进使其量变,新材料的改进使其质变。突破应用范围,提高能量密度,始终是电化学储能技术的不便追求,各类电化学储能电池在生产和研究中具有不同的创新和应用方向。当前主要的电化学储能电池有铅酸电池、氧化还原液流电池、钠硫电池、超级电容器、锂离子电池。中药抑菌
关键词:电化学储能  铅酸电池  氧化还原液流电池  钠硫电池  超级电容器  锂离子电池
正文:电能是现代社会人类生活、生产中必不可缺的二次能源。随着社会经济的发展,人们对电的需求越来越高。电力需求昼夜相差很大但发电厂的建设规模必须与高峰用电相匹配投资大利用率较低。另一方面随着化石能源的不断枯竭人们对风能、水能、太阳能等可再生能源的开发和利用越来越广泛。为了满足人们生产及生活的用电需求减少发电厂的建设规模减少投资提高
效率以及保证可再生能源系统的稳定供电开发经济可行的储能()技术使发电与用电相对独立极为重要。目前储能技术应用最为广泛的是电化学储能,电化学储能的发展史,是
一部材料科技的进步史,工艺的改进使其量变,新材料的改进使其质变。突破应用范围,提高能量密度,始终是电化学储能技术的不便追求,各类电化学储能电池在生产和研究中具有不同的创新和应用方向。当前主要的电化学储能电池有铅酸电池、氧化还原液流电池、钠硫电池、超级电容器、锂离子电池。下面分别介绍这几种储能电池的特点。
铅酸电池:自从1859年法国人普兰特发明了铅酸电池,至今已有140多年的历史。在这一百多年来以来,人们对它进行不断的研究和改进,是铅酸电池得到了极大的发展,目前主流的是阀控式铅酸电池。铅酸电池由于材料来源广泛,价格低廉,性能优良,目前应用比较广泛。
铅酸电池的优点:
(1)价格低廉。主要原因是原材料容易得到而且价格便宜;技术成熟;产品一致性好;世界范围内均可实现大规模生产,这是铅酸电池得到官方应用的主要原因之一。
(2)比功率高。铅酸电池电势高,大电流放电性能优良,可以满足车辆启动和加速的功率要求,因此可以减少大功率电子控制器件的使用,从而提高了车辆能量的利用效率。
(3)浮充寿命长。
(4)使用安全。铅酸电池易于识别电池喝点状态,可在较宽的温度内使用,而且电性能稳定可靠。
(5)再生率高。
铅酸电池的缺点:
(1)比能量低。原因是:电池的集流体、集流柱、电池槽和隔板等非活性部件增大了它的体积和重量,但活性物质的利用率却不高。
(2)循环寿命较短。影响铅酸电池寿命的因素主要有:热失控、环境温度、俯冲电压、正极板栅的腐蚀、负极硫酸盐化、水损耗及超细玻璃纤维棉隔板弹性疲劳等。
(3)自放电,过充电时有大量的气体产生。
铅酸电池优良的性价比使得它在二次电池领域占有统治地位。虽然阀控式
铅酸电池的技术已趋于成熟,但仍存在循环寿命短等问题,这些问题还有待与解决。而电池新技术的不断采用、应用领域的不断开拓和深入、新型电车成本的降低和能量性能的提高,又使得铅酸电池面临着很大的挑战。铅酸电池只有在技术上不断改进和创新才不会被别的化学电源所代替。
氧化还原液流电池:氧化还原液流电池(RFB)亦称再生燃料电池,是一种新型电化学储能装置,由电池堆、正负电解液储槽及其它辅助控制装置组成。平时它以充电方式将发电机的电能转化成液态燃料和液态氧化剂的化学能储存起来。需要时它以放电方式将液态燃料和液态氧化剂的化学能转化成电能。
与常规电池相比,氧化还原液流电池具有下列特征。
1 简单的工作原理和长使用寿命电池反应为液相反应,只有溶液中离子化合价的变化。与使用固体活性物质的电池相比不存在减少电池使用寿命的的因数,如活性物质的损失、相变,电池使用寿命可达l520 年。
2 灵活的安装布局,适于用作规模储能装置。
电池的输出功率(电池堆)和容量(电解液储槽)可分隔开,因此可根据安装的位置变更两部分的布局。可根据功率和容量需要更改设计。例如:如果容量需要加倍而输出功率不变,只须将储槽尺寸加倍即可。
3 无静置损失和快启动问题
电池充电后荷电电解液分别储存在正负储槽中,长期停机期间不会发生自放电,也不需要辅助动力。而且,长期放置后只须起动泵,这样只须几分钟就可启动。
电梯门机系统
4 安全可靠,易于维护
电解液(含活性物质)从相应的储槽泵入各电池中,这样,每个单体电池的充电态是相同的,减少了如均衡充电这类特殊的操作。而且,维护也方便,操作成本低。与氢氧燃料电池相比,因为电解液相对安全,保证极好的环境安全性。
5)电池充放电性能好,可深度放电而不损坏电池;电池的自放电低,在电池系统关闭模式下,储槽中的电解液无自放电。
6)电池部件多为廉价的碳材料、工程塑料,使用寿命长,材料来源丰富,加工技术较成熟,易于回收。在固定储能领域,成本和效率是第一重要的,氧化还原液流电池能量转化效率高,成本优势明显。
氧化还原液流电池结构紧凑,寿命长,可快速充电,功率和容量相对独立容易安装,具有良好的发展前景。但还存在若干技术难点比如离子交换膜材料、电极及电解液方面,这还需要科技人员推动其发展。
钠硫电池:钠硫NaS电池是一种负极用钠正极用硫磺电解质用陶瓷氧化铝类材料组成的充电电池
    纵观NaS电池的理论试验研究及应用分析其有众多优势
1高比能量比能量是指电池单位质量或单位体积所具有的有效电能量大功率NaS电池先进的结构设计使其理论比能量为760W·kg实际已达到300W·kg是锂电池的镍电池的铝酸电池的10
2大电流高功率放电
3无自放电现象高充放电效率NaS电池采用固体电解质不会产生如采用液体电解质的二次电池所产生的自放电及副反应故充放电效率几乎为100%
4充电时间短大功率NaS电池一次充电时间约2030min
5使用长寿命大功率NaS电池连续充放电近万次使用寿命可达10a之久
6体积小结构紧凑质量轻
7无污染可回收在大功率NaS电池的制造过程中不会对环境造成污染完全符合国家新能源标准单质Na塑料光纤收发器元素本身对人体无毒性且其废旧电池中的Na 回收率将
100%回收后的能源可循环再利用进一步降低了成本
8安全可靠大功率NaS电池由外壳体中层壳体内胆的两层真空室构成内胆中高温反应产生的氢气由内胆内的导管上的安全阀自动排出用不锈钢等金属材料制成的电池外壳结构非常坚固并与陶瓷组件一起形成安全屏障因此其密封性好此外NaS电池还具有无污染释放无振动无噪声等特点
 NaS电池的不足
1安全问题NaS电池的运行要求是Na都处于液态且达到300℃左右的高温一旦陶瓷电介质破损高温的液态Na就会直接接触并发生剧烈的放热反应此外NaS电池还不能过度充电否则会发生危险
2材料腐蚀及隔膜问题高温下金属零部件在及硫化物介质中长时间工作会被腐蚀
3运行保温与制造耗能问题由于NaS电池在300℃才能启动工作时还需要加热保温公交车李娟,故需要附加供热设备来维持温度此外煅烧生产陶瓷管的过程耗能较大
NaS电池具有容量大万能夹具体积小使用寿命长效率高原材料广制备成本低不受场地限制维护方便等诸多远胜于锂离子电池等其他二次电池的优点完全可以取代锂电池等在民用军用等领域发挥更大的作用其具有广阔的应用前景然而发展NaS电池还应解决以下问题
1降低NaS电池的启动运行温度出能使NaS电池在常温或较低温度下启动并发生反应的新材料或添加元素使得NaS电池的启动运行安全性更高
2解决材料和隔膜腐蚀问题探索新的隔膜材料或添加新材料提高NaS电池部件和介质的耐腐蚀性延长NaS电池的使用寿命提升其使用安全
3研究高效的废旧电池回收利用方法探求能够真正百分之百回收利用废弃损坏的电池内Na和硫化物的方法不仅可以进一步降低成本而且可以减少对环境的污染
4开发高效的大规模NaS电池的充放电智能监控系统高效智能的充放电监控系统主要可解决电池个体充放电程度不一致问题防止因过充过放现象影响整体电池组的使用效率从而延长电池的使用寿命
超级电容器:超级电容器不同于常规的电容器, 它存储的能量可达静电电容器的100倍以上, 同时又具有比电池高出10~ 100倍的功率密度 与静电电容器相比 其优点是能量密度非常高, 容量可达到数千法拉但是它耐压较低, 受制于电解液的分解电压, 一般水系电解液的单体工作电压为0 V -1. 4 V, 且电解液腐蚀性强; 非水系可以高达4. 5 V, 实际使用的一般为3. 5 V, 漏电较大微调电容, 且容量随频率显著降低 与电池相比, 超级电容器具有许多电池无法比拟的优点
1超高电容量( 0. 1-50 000 F). 比同体积钽、铝电解电容器电容量大2 000-50 000
2漏电流极小, 具有电压记忆功能, 电压保持时间长
3功率密度高, 可作为功率辅助器, 供给大电流
4充放电效率高, 具有超长自身寿命和循环寿命, 即使几年不用仍可留原有的性能指标, 充放电次数大于10万次
5对过充放电有一定的承受能力, 短时过压不会产生严重影响, 能反复地稳定充电
6温度范围宽- 40 - + 70 , 一般电池是- 20 - + 60 且免维护, 环境友善
对于超级电容器, 今后要研究的方向和重点是:利用超级电容器的高比功率特性和快速放电特性, 进一步优化超级电容器在电力系统中的应用技术。此外, 在我国大力发展新能源这一政策指导下, 在光伏发电领域、风力发电领域, 超级电容器以其快充快放等特点为改进和发展关键设备提供了有利条件。
锂离子电池:离子电池通常具有1 000多次的循环寿命, 是镍镉、镍所谓锂离子电池是指分别用两个能可逆地嵌入和脱嵌锂离子的化合物作为正负极构成的二次电池。电池在充电时, Li+ 从正极中脱出, 通过电解液和隔膜, 嵌入到负极中。反之, 电池放电时, Li+ 由负极中脱嵌, 通过电解液和隔膜, 重新嵌入到正极中。由于Li+ 在正负极中有相对固定的空间和位置, 因此电池充放电反应的可逆性很好, 从而保证了电池的长循环寿命和工作的安全性。

本文发布于:2024-09-23 09:24:11,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/220465.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:电池   铅酸   材料   储能   电解液   具有   需要   能量
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议