一种导电耐高温聚酰亚胺复合胶膜及其制备方法与流程



1.本发明属于导电复合材料制备技术领域,具体涉及一种导电耐高温聚酰亚胺复合胶膜及其制备方法。


背景技术:



2.复合材料具备高比强度比模量的性能特点,具备明显的减重效果,因此在航空航天领域有着广泛的应用,是重要的航空航天结构材料之一。随着高超音速飞行器、高速航天飞行器等的开发,复合材料面临日益苛刻的高温服役环境,因此对复合材料的结构和性能提出了更高的要求。以聚酰亚胺、双马来酰亚胺、聚芳基乙炔、氰酸酯、酚醛、聚苯并噁嗪等耐温等级较高的树脂为基体的复合材料,在高温服役环境下仍能发挥其结构承载性能,因此已经广泛用于航天器的耐高温复合材料结构主承力和次承力部件。
3.相比较金属材料而言,复合材料导电性能较差,因此复合材料部件表面要设计导电防护层以承受雷击时的瞬间放电,避免复合材料部件的烧蚀损伤,导致严重后果,因此迫切需要对复合材料表面进行导电防护。
4.目前航空航天领域可通过采用等离子喷涂金属涂层、表面铺覆金属网、表面铺覆导电胶膜等外加导电防护层的方法提高复合材料导电性,但外导电金属防护层与复合材料的结合力较弱,易发生脱落,失去导电防护作用,并且,对于曲率较大的复合材料制件存在工艺性差、导电性能不稳定、增重较大等问题。另一方面,现有的导电防护胶膜多为环氧树脂类胶膜,难以满足耐高温复合材料构件的使用温度需求。


技术实现要素:



5.本发明的目的在于克服现有技术能力不足,解决耐高温树脂基复合材料导电性差的问题,提供一种导电耐高温聚酰亚胺复合胶膜的制备及使用方法,有效提高复合材料导电能力。
6.本发明的技术解决方案:
7.一种导电耐高温聚酰亚胺复合胶膜,包括由导电泡沫和超薄织物粘合形成的三维夹层结构,以及浸渍所述三维夹层结构的耐高温聚酰亚胺树脂;所述聚酰亚胺树脂中含有纳米导电短切纤维。
8.优选的,上述三维夹层结构包括导电泡沫、超薄织物、粘合剂层,其中以多孔结构的三维导电泡沫作为胶膜导电骨架,通过粘合剂固定于超薄织物上下表面,以热固性聚酰亚胺本体树脂作为粘合剂,层压粘合后得到复合导电织物预制体,将复合导电织物预制体浸渍于热固性聚酰亚胺树脂混合胶液中,烘干收卷后得到导电耐高温聚酰亚胺复合胶膜,根据该方案制备的树脂胶膜具备优异的导电性和良好的工艺性。
9.一种高导电性耐高温聚酰亚胺导电胶膜的制备方法,通过以下步骤实现:
10.步骤一:利用偶联剂预处理导电泡沫。
11.优选的,利用溶剂将偶联剂配置成浓度5-10wt%的溶液,将导电泡沫浸渍于偶联
剂溶液中,处理时间2-4h,烘干后备用。
12.步骤二:制备复合导电织物预制体:将导电泡沫通过热固性聚酰亚胺树脂本体粘合剂固定于超薄织物上下表面,得到复合导电织物预制体。
13.优选的,在超薄织物表面涂刷热固性聚酰亚胺树脂本体粘合剂后与预处理后的导电泡沫在压延机上进行层压复合,在160℃-200℃下经压延工序压延成复合导电织物预制体。
14.步骤三:浸胶制备导电胶膜:将复合导电织物预制体浸渍于热固性聚酰亚胺树脂混合胶液中,得到导电耐高温聚酰亚胺复合胶膜。
15.优选的,在张力牵引下,将复合导电织物预制体通过聚酰亚胺树脂混合溶液浸胶槽,其中聚酰亚胺树脂混合溶液由热固性聚酰亚胺树脂50~100份,纳米短切导电碳纤维0.1~5份,以及有机溶剂100~200份进行配比混合(其中的份数均为质量份),烘干后收卷得到导电耐高温聚酰亚胺复合胶膜。
16.本发明技术方案中,导电泡沫是有一定强度的含有三维骨架结构的多孔材料,具有较大的比表面积、较好的导电率、较高的化学稳定性以及较强的结构强度等性能。
17.优选的,导电泡沫选择具有三维多孔结构的耐高温导电泡沫,具体包括石墨烯泡沫、三聚氰胺碳化泡沫、聚丙烯腈泡沫、泡沫铜、泡沫镍、mxene泡沫等其中的一种或几种,孔径范围在微纳米尺度,有利于复合材料基体树脂的大分子链渗透嵌入泡沫的微纳米孔径区域中,形成二者之间的机械互锁结构,提高界面粘接能力。
18.优选的,导电泡沫的电导率大于105s
·
m-1
,厚度为0.05-0.5mm,根据设计的胶膜厚度选取适当的泡沫厚度。
19.优选的,为提高导电泡沫表面的化学活性,解决其与聚酰亚胺及树脂基体界面相容性较差的问题,首先利用化学偶联剂预处理导电泡沫,偶联剂水解后产生化学活性基团,一方面提高导电泡沫表面的润湿性,实现聚酰亚胺树脂与导电泡沫的良好浸润,另一方面偶联剂分子中的活性基团能与复合材料基体树脂产生化学键、氢键等化学键合作用,从而在导电胶膜与复合材料二者之间形成化学桥连作用,提高二者的界面粘结强度。
20.优选的,偶联剂的种类没有限制,如可以选择硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂,溶剂的种类也没有限制,满足偶联剂的溶解即可,一般为醇、酮、酯及烃类的一种或几种,一般在溶剂中加入少量水促进偶联剂的水解。
21.优选的,步骤二中超薄织物的纤维种类根据产品结构特点和设计承载进行选择,如t700级、t800级、t1000级等一种或几种,增强织物的形式可以是平纹织物、缎纹织物、斜纹织物、纬编织物及经编织物,优选面密度50~70g/m2的超薄织物,其厚度远小于传统织物,有利于树脂的浸润,提高复合材料的成型质量,同时制备的导电织物预制体预备良好的铺贴性能,可以进一步满足复杂曲面结构件的铺贴要求。
22.步骤二和步骤三中的热固性聚酰亚胺树脂的种类没有特殊限制,根据设计要求选择可溶性的耐高温聚酰亚胺树脂,如采用苯炔基封端、乙炔封端聚酰亚胺树脂等中的一种或几种,具体可为yh-550、pmr-15、pmr
‑ⅱ‑
50、kh-400、kh-500s等的一种或几种。
23.优选地,有机溶剂对其种类也没有特殊限制,只要能满足聚酰亚胺树脂的溶解即可,可以为单一一种溶剂也可以为多种混合溶剂,如可以采用n,n-二甲基乙酰胺(dmac)、二甲基甲酰胺(dmf)、二氧六环、四氢呋喃等有机溶剂。
24.优选的,步骤三中在聚酰亚胺混合树脂体系中加入一定重量份数的纳米导电短切碳纤维,具有高电导率和较大长径比,在泡孔壁和泡孔框架中相互搭接形成导电网络,使其在较低含量下能够有效提高材料的电导率,使其拥有良好的力学强度之外,还提供了大量的电荷转移通道,起到局部增强和桥连的作用。另一方面,纳米短切纤维均匀分布在聚酰亚胺树脂中,与导电泡沫混合后,泡沫结构的存在产生体积排斥效应使短切纤维均匀分布在泡沫壁和泡沫框架内,在导电泡沫三维网格结构的基础上增加导电连接位点,起到局部增强作用,通过与导电泡沫的协同增强作用,形成有效的导电通路,在聚酰亚胺树脂基体和导电泡沫骨架中起到了桥梁作用,进一步提高导电性能。
25.优选的,短切碳纤维使用前进行等离子体处理,对碳纤维表面进行腐蚀、氧化,等离子体处理后短切纤维表面形成腐蚀沟槽并生成一些化学基团,一方面提高与聚酰亚胺基体界面的物理啮合和化学结合作用,促进在胶膜基体内部的均匀分散,另一方面作为增韧剂,增加胶膜整体韧性和成膜性。
26.优选的,步骤三的聚酰亚胺树脂体系中的纳米导电短切纤维0.1~5份,导电填料含量过低时,无法有效提高胶膜的导电效率;含量过高,易导致聚酰亚胺树脂溶液体系黏度过大,且在聚酰亚胺树脂中发生团聚,影响胶膜的制备工艺性。本发明提出的技术方案中,以导电泡沫作为导电支架,短切碳纤维作为导电桥梁,内部形成三维导电网络,提高内部导电通路的导电效率,因此短切碳纤维在较低的渗流阀值下即可形成有效的导电通路。
27.本发明与现有技术相比,取得的有益效果如下:
28.本发明提出了一种新型的具备高导电性的耐高温聚酰亚胺树脂复合胶膜的制备方法,利用导电泡沫和超薄织物形成的三维夹层结构作为导电骨架,以耐高温聚酰亚胺树脂作为胶膜基体,构建了贯穿胶膜内部的导电网络。进一步的,聚酰亚胺树脂中添加的纳米导电短切纤维作为导电填料,在导电骨架基础上增加胶膜内部的导电搭接点,通过协同作用有效提高了树脂胶膜的导电性,制备的树脂胶膜兼具优异的耐温性能和导电性能。
29.本发明提出的聚酰亚胺导电胶膜与金属涂层、金属网等传统导电防护方式相比,密度低,增重小,并且与复合材料具有更强的界面粘接强度,兼具良好的导电性能和工艺性能。通过化学偶联剂对导电泡沫进行预处理,提高表面化学活性的同时,偶联剂的桥连作用进一步促进导电泡沫与胶膜基体聚酰亚胺树脂的化学键合作用;另一方面,泡沫固有的多孔结构有利于增强复合材料基体树脂与泡沫的物理啮合作用,改善了导电胶膜与复合材料的界面粘接性能,因此避免了传统导电防护层结合力弱等问题。
30.本发明制备的导电耐高温聚酰亚胺树脂胶膜可以充分满足耐高温树脂基复合材料构件不同导电性能的设计要求,一方面适用于铺覆在预浸料表面,提高复合材料的表面导电性能,另一方面可以在复合材料铺层过程中在不同厚度位置插入一定层数的导电胶膜,通过与复合材料一体化共固化成型,制备具有不同导电特性的复合材料构件。
附图说明
31.图1是导电耐高温聚酰亚胺复合胶膜的制备过程示意图。
具体实施方式
32.下面结合具体实例及附图对本发明进行详细说明。
33.实施例1:
34.利用三聚氰胺碳化泡沫作为导电泡沫,以95%乙醇和5%水的混合溶液作为溶剂,将硅烷偶联剂配置成5wt%浓度的稀溶液,充分搅拌均匀后将导电泡沫浸渍于偶联剂溶液中,处理时间2h,将处理好的泡沫80℃烘干备用。
35.其中,三聚氰胺碳化泡沫通过商用途径购买,电导率为2
×
105s
·
m-1
,平均厚度0.1mm。
36.在超薄织物表面涂刷yh550聚酰亚胺树脂本体粘合剂后与预处理后的导电泡沫在压延机上进行层压复合,在160℃下经压延工序压延成复合导电织物预制体。
37.在张力牵引下,将复合导电织物预制体通过聚酰亚胺树脂混合溶液浸胶槽,其中聚酰亚胺树脂混合溶液由yh-550聚酰亚胺树脂80份,纳米短切导电碳纤维2份,以及有机溶剂150份进行配比混合,烘干后收卷得到厚度0.2mm的聚酰亚胺复合胶膜,最终进行覆膜收卷。
38.利用聚酰亚胺复合胶膜制备耐高温聚酰亚胺复合材料构件,利用碳纤维增强聚酰亚胺预浸料进行准各向同性铺层,将上述得到的聚酰亚胺复合胶膜铺覆于预浸料上下表面,采用模压成型制备聚酰亚胺复合材料构件。
39.实施效果:本实施例制备了一种导电耐高温聚酰亚胺复合胶膜,表面电阻率5.14
×
10-4
ω
·
cm,利用该胶膜制备了耐高温导电聚酰亚胺复合材料。通过对本实施例所制备的聚酰亚胺复合材料进行超声c扫描未发现分层及疏松缺陷。通过对本发明所制备的聚酰亚胺复合材料不同方向的电阻率进行测试,表面电阻率3.5
×
10-2
ω
·
cm,厚度方向电阻率0.17ω
·
cm。
40.利用现有技术制备的无导电胶膜的聚酰亚胺复合材料的导电性能:表面电阻率0.84ω
·
cm,厚度方向电阻率3.43ω
·
cm。
41.实施例2:
42.利用镍泡沫作为导电泡沫,以95%乙醇和5%水的混合溶液作为溶剂,将硅烷偶联剂配置成5wt%浓度的稀溶液,充分搅拌均匀后将导电泡沫浸渍于偶联剂溶液中,处理时间2h,将处理好的泡沫80℃烘干备用。
43.其中,镍泡沫通过商用途径购买,电导率为5
×
105s
·
m-1
,平均厚度0.15mm。
44.在超薄织物表面涂刷kh400聚酰亚胺树脂本体粘合剂后与预处理后的导电泡沫在压延机上进行层压复合,在160℃下经压延工序压延成复合导电织物预制体。
45.在张力牵引下,将复合导电织物预制体通过聚酰亚胺树脂混合溶液浸胶槽,其中聚酰亚胺树脂混合溶液由yh-550聚酰亚胺树脂80份,纳米短切导电碳纤维2份进行配比混合,烘干后收卷得到厚度0.2mm的聚酰亚胺复合胶膜,最终进行覆膜收卷。
46.利用聚酰亚胺复合胶膜制备耐高温聚酰亚胺复合材料构件,首先利用碳纤维增强聚酰亚胺预浸料进行准各向同性铺层,将上述得到的聚酰亚胺复合胶膜插入铺层中间,同时分别铺覆于预浸料上下表面铺覆于预浸料上下表面,采用模压成型制备聚酰亚胺复合材料构件。
47.实施效果:本实施例制备了一种导电耐高温聚酰亚胺复合胶膜,表面电阻率2.63
×
10-4
ω
·
cm,利用该胶膜制备了耐高温导电聚酰亚胺复合材料。通过对本实施例所制备的聚酰亚胺复合材料进行超声c扫描未发现分层及疏松缺陷。通过对本发明所制备的聚酰亚
胺复合材料不同方向的电阻率进行测试,表面电阻率1.74
×
10-2
ω
·
cm,厚度方向电阻率0.08ω
·
cm。
48.实施例3:
49.除导电泡沫为石墨烯泡沫,电导率为3
×
105s
·
m-1
外,其它与实施例2相同。
50.实施效果:本实施例制备了一种导电耐高温聚酰亚胺复合胶膜,表面电阻率4.52
×
10-4
ω
·
cm,利用该胶膜制备了耐高温导电聚酰亚胺复合材料。通过对本实施例所制备的聚酰亚胺复合材料进行超声c扫描未发现分层及疏松缺陷。通过对本发明所制备的聚酰亚胺复合材料不同方向的电阻率进行测试,表面电阻率2.75
×
10-2
ω
·
cm,厚度方向电阻率0.14ω
·
cm。
51.实施例4:
52.制备聚酰亚胺导电胶膜的方法与实施例1相同,利用聚酰亚胺复合胶膜制备双马来酰亚胺复合材料构件,利用碳纤维增强双马来酰亚胺预浸料进行准各向同性铺层,将上述得到的聚酰亚胺复合胶膜铺覆于预浸料上下表面,采用模压成型制备双马来酰亚胺复合材料构件。
53.实施效果:本实施例制备了一种导电耐高温聚酰亚胺复合胶膜,表面电阻率5.14
×
10-4
ω
·
cm,利用该胶膜制备了导电双马来酰亚胺复合材料。通过对本实施例所制备的聚酰亚胺复合材料进行超声c扫描未发现分层及疏松缺陷。通过对本发明所制备的双马来酰亚胺复合材料不同方向的电阻率进行测试,表面电阻率2.54
×
10-2
ω
·
cm,厚度方向电阻率0.12ω
·
cm。
54.利用现有技术制备的无导电胶膜的双马来酰亚胺复合材料的导电性能:表面电阻率0.76ω
·
cm,厚度方向电阻率3.17ω
·
cm。
55.实施例5:
56.除导电泡沫为镍泡沫,电导率为5
×
105s
·
m-1
外,其它与实施例4相同。
57.实施效果:本实施例制备了一种导电耐高温聚酰亚胺复合胶膜,表面电阻率2.63
×
10-4
ω
·
cm,利用该胶膜制备了导电双马来酰亚胺复合材料。通过对本实施例所制备的聚酰亚胺复合材料进行超声c扫描未发现分层及疏松缺陷。通过对本发明所制备的双马来酰亚胺复合材料不同方向的电阻率进行测试,表面电阻率1.54
×
10-2
ω
·
cm,厚度方向电阻率0.07ω
·
cm。
58.本发明未详细说明部分为本领域技术人员公知技术。
59.以上公开的本发明的具体实施例,其目的在于帮助理解本发明的内容并据以实施,本领域的普通技术人员可以理解,在不脱离本发明的精神和范围内,各种替换、变化和修改都是可能的。本发明不应局限于本说明书的实施例所公开的内容,本发明的保护范围以权利要求书界定的范围为准。

技术特征:


1.一种导电耐高温聚酰亚胺复合胶膜,其特征在于,包括由导电泡沫和超薄织物粘合形成的三维夹层结构,以及浸渍所述三维夹层结构的耐高温聚酰亚胺树脂;所述聚酰亚胺树脂中含有纳米导电短切纤维。2.根据权利要求1所述的方法,其特征在于,所述三维夹层结构以热固性聚酰亚胺本体树脂作为粘合剂,将导电泡沫固定于超薄织物的上下表面。3.一种导电耐高温聚酰亚胺复合胶膜的制备方法,其特征在于,包括以下步骤:1)利用偶联剂预处理导电泡沫;2)将导电泡沫通过热固性聚酰亚胺树脂本体粘合剂固定于超薄织物上下表面,得到复合导电织物预制体;3)将复合导电织物预制体浸渍于热固性聚酰亚胺树脂混合胶液中,得到导电耐高温聚酰亚胺复合胶膜。4.根据权利要求3所述的方法,其特征在于,步骤1)利用溶剂将偶联剂配置成浓度5-10wt%的溶液,将导电泡沫浸渍于偶联剂溶液中,处理时间2-4h,烘干后备用。5.根据权利要求3所述的方法,其特征在于,步骤2)在超薄织物表面涂刷热固性聚酰亚胺树脂本体粘合剂后与预处理后的导电泡沫在压延机上进行层压复合,经压延工序压延成复合导电织物预制体。6.根据权利要求3所述的方法,其特征在于,步骤3)所述热固性聚酰亚胺树脂胶液中含有的组分及其质量份为:热固性聚酰亚胺树脂50~100份,纳米导电短切纤维0.1~5份,以及有机溶剂100~200份。7.根据权利要求6所述的方法,其特征在于,所述纳米导电短切纤维为纳米导电短切碳纤维。8.根据权利要求6所述的方法,其特征在于,所述纳米导电短切纤维在使用前进行等离子体处理,以对纤维表面进行腐蚀、氧化。9.根据权利要求3所述的方法,其特征在于,所述导电泡沫为具有三维多孔结构的耐高温导电泡沫,包括石墨烯泡沫、三聚氰胺碳化泡沫、聚丙烯腈泡沫、泡沫铜、泡沫镍、mxene泡沫中的一种或几种,孔径范围在微纳米尺度。10.根据权利要求3所述的方法,其特征在于,所述导电泡沫的电导率大于105s
·
m-1
,厚度为0.05-0.5mm。

技术总结


本发明涉及一种导电耐高温聚酰亚胺复合胶膜及其制备方法。该导电耐高温聚酰亚胺复合胶膜,包括由导电泡沫和超薄织物粘合形成的三维夹层结构,以及浸渍所述三维夹层结构的耐高温聚酰亚胺树脂;所述聚酰亚胺树脂中含有纳米导电短切纤维。该制备方法包括:1)利用偶联剂预处理导电泡沫;2)将导电泡沫通过热固性聚酰亚胺树脂本体粘合剂固定于超薄织物上下表面,得到复合导电织物预制体;3)将复合导电织物预制体浸渍于热固性聚酰亚胺树脂胶液中,得到导电耐高温聚酰亚胺复合胶膜。本发明有效提高了树脂胶膜的导电性,制备的树脂胶膜兼具优异的耐温性能和导电性能。耐温性能和导电性能。耐温性能和导电性能。


技术研发人员:

李娜 柯红军 汪东 尹先鹏 许晓洲 辛颖 王国勇 李丽英 张昊

受保护的技术使用者:

航天特种材料及工艺技术研究所

技术研发日:

2021.05.17

技术公布日:

2022/11/22

本文发布于:2024-09-20 15:04:51,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/2129.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:聚酰亚胺   胶膜   耐高温   泡沫
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议