电感分类及选型

一、电感的基本原理
电感,和电容、电阻一起,是电子学三大基本无源器件;电感的功能就是以磁场能的形式储存电能量。
以圆柱型线圈为例,简单介绍下电感的基本原理
如上图所示,当恒定电流流过线圈时,根据右手螺旋定则,会形成一个图示方向的静磁场。而电感中流过交变电流,产生的磁场就是交变磁场,变化的磁场产生电场,线圈上就有感应电动势,产生感应电流:
电流变大时,磁场变强,磁场变化的方向与原磁场方向相同,根据左手螺旋定则,产生的感应电流与原电流方向相反,电感电流减小;
电流变小时,磁场变弱,磁场变化的方向与原磁场方向相反,根据左手螺旋定则,产生的感应电流与原电流方向相同,电感电流变大。
以上就是楞次定律,最终效果就是电感会阻碍流过的电流产生变化,就是电感对交变电流呈
高阻抗。同样的电感,电流变化率越高,产生的感应电流越大,那么电感呈现的阻抗就越高;如果同样的电流变化率,不同的电感,如果产生的感应电流越大,那么电感呈现的阻抗就越高。
所以,电感的阻抗于两个因素有关:一是频率;二是电感的固有属性,也就电感的值,也称为电感。根据理论推导,圆柱形线圈的电感公式如下:
可以看出电感的大小与线圈的大小及内芯的材料有关。
实际电感的特性不仅仅有电感的作用,还有其他因素,如:
· 绕制线圈的导线不是理想导体,存在一定的电阻;
· 电感的磁芯存在一定的热损耗;
· 电感内部的导体之间存在着分布电容。
因此,需要用一个较为复杂的模型来表示实际电感,常用的等效模型如下:
等效模型形式可能不同,但要能体现损耗和分布电容。根据等效模型,可以定义实际电感的两个重要参数。
自谐振频率(Self-Resonance Frequency)
由于Cp的存在,与L一起构成了一个谐振电路,其谐振频率便是电感的自谐振频率。在自谐振频率前,电感的阻抗随着频率增加而变大;在自谐振频率后,电感的阻抗随着频率增加而变小,就呈现容性。
品质因素(Quality Factor)
也就是电感的Q值,电感储存功率与损耗功率的比,Q值越高,电感的损耗越低,和电感的直流阻抗直接相关的参数。
自谐振频率和Q值是高频电感的关键参数
二、电感的工艺结构
电感的工艺大致可以分为3种:
2.1 绕线电感(Wire Wound Type)
顾名思义就是把铜线绕在一个磁芯上形成一个线圈,绕线的方式有两种:
圆柱形绕法(Round Wound)
圆柱形绕法很常见,应用也很广,例如:
平面形绕法(Flat Wound)
平面形绕法也很常见,大家一定见过一掰就断的蚊香
动态投影灯平面形绕法优点很明显,就是减小了器件的高度。
由前文的公式可知,磁芯的磁导率越大,电感值越大,磁芯可以是
· 非磁性材料:例如空气芯、陶瓷芯,貌似就不能叫磁芯了;这样电感值较小,但是基本不存在饱和电流
·
铁磁性材料:例如铁氧体、波莫合金等等;合金磁导率比铁氧体大;铁磁性材料存在磁饱和现象,有饱和电流。
绕线电感可提供大电流、高感值;磁芯磁导率越大,同样的感值,绕线就少,绕线少就能降低直流电阻;同样的尺寸,绕线少可以绕粗,提高电流。
另外,电源设计中,经常遇到电感啸叫的问题,本质就是磁场的变化引起了导体,也就是线圈的振动,振动的频率刚好在音频范围内,人耳就可以听见,合金一体成型电感,比较牢固,可以减少振动。
2.2 多层片状电感(Multilayer Type)
多层片状电感的制作工艺:将铁氧体或陶瓷浆料干燥成型,交替印刷导电浆料,最后叠层、烧结成一体化结构(Monolithic)。
多层片状电感的比绕线电感尺寸小,标准化封装,适合自动化高密度贴装;一体化结构,可靠性高,耐热性好。
引申阅读:搜索关键词LTCC、Thick Film
2.3 薄膜电感(Thin Film Type)
薄膜电感采用的是类似于IC制作的工艺,在基底上镀一层导体膜,然后采用光刻工艺形成线圈,最后增加介质层、绝缘层、电极层,封装成型。
薄膜器件的制作工艺,如下图所示
· 更小的尺寸,008004封装
· 更小的Value Step,0.1nH
· 更小的容差,0.05nH
· 更好的频率稳定性
谁能告诉我Value Step如何翻译才信达雅?云海os
引申阅读:
· Murata Develops World's Smallest Chip Inductor - 008004 size (0.25 x 0.125 mm)
· ATFC-Thin-Film-Inductor
· What is Thin Film
· What is Thin Film?
三、电感的应用及选型
电感,从工艺技术上,领先的基本上是三大日系厂商:TDK、Murata、Taiyo Yuden。这三家的产品线完整,基本上可以满足大多数需求。
三家都有相应的选型软件,有电感、电容等所有系列的产品及相关参数曲线。
· SEAT 2013 - TDK
· Simsurfing - Murata
· Taiyo Yuden Components Selection Guide & Data Library
个人感觉TDK和Murata更领先一点,从的质量看出来的,像Coilcraft的就low一点,毕竟网站也是需要投资的。
在电路设计中,电感主要有三大类应用:
· 功率电感:主要用于电压转换,常用的DCDC电路都要使用功率电感;
· 去耦电感:主要用于滤除电源线或信号线上的噪声,EMC工程师应该熟悉;
· 高频电感:主要用于射频电路,实现偏置、匹配、滤波等电路。
3.1 功率电感
功率电感通常用于DCDC电路中,通过积累并释放能量来保持连续的电流。
功率电感大都是绕线电感,可以提高大电流、高电感;
多层片状功率电感也越来越多,通常电感值和电
功率电感需要根据所选的DCDC芯片来选型。通常,DCDC芯片的规格书上都有推荐的电感值,以及相关参数的计算,这里不再赘述。从电感本身的角度来说明如何选型。
电感值
通常应使用DCDC芯片规格书推荐的电感值;电感值越大,纹波越小,但尺寸会变大;通常提高开关频率,可以使用小电感,但开关频率提高会增加系统损耗,降低效率;
额定电流
功率电感一般有两个额定电流,即温升电流和饱和电流;
当电感有电流通过的时候,由于损耗的存在,电感发热而产生温升,电流越大,温升越大;在额定的温度范围内,允许的最大电流即为温升电流。吸咪头
增加磁芯的磁导率,可以提高电感值,通常使用铁磁性材料做磁芯。铁磁性材料存在磁饱和现象,即当磁场强度超过一定值时,磁感应强度不在增加,即磁导率下降了,也就是电感下降了。在额定电感值范围内,允许的最大电流即为饱和电流。无线通信系统
磁滞回线:磁性材料-------铁氧磁体,比重计,多孔性材料密度仪,液体密度计,固体颗粒体积测试仪,磁性材料密度仪
通常对DCDC电路设计,要计算峰值(PEAK)电流和均方根(RMS)电流,通常规格书中会给出计算公式。
温升电流是对电感热效应的评估,根据焦耳定律,热效应需要考虑一段时间内的电流对时间的积分;选择电感时,设计RMS电流不能超过电感温升电流。
为了保证在设计范围内电感值稳定,设计峰值电流不能超过电感的饱和电流。
usb mass为了提高可靠性,降额设计是必须的,通常建议工作值应降额到不高于额定值的80%。当然降额幅度过大会大幅提高成本,需要综合考虑。
直流电阻
电感的直流电阻会产生热损耗,导致温升,降低DCDC效率;因此,当对效率敏感时,应选择直流阻抗低的电感,例如15毫欧。
还有就是根据产品的应用温度要求、是否需要满足RoHS、汽车级Q200等标准的要求、还有PCB结构限制。
大电流的应用,电感的漏磁就会相当可观,会对周围电路,例如CPU等造成影响。我之前就遇到过X86的CORE电的电感漏磁造成CPU无法启动的现象。因此,大电流应用,应选择屏蔽性能好的电感并且Layout时注意避开关键信号。
引申阅读:Inductors for Power Lines
3.2 去耦电感
去耦电感也叫Choke,教科书上通常翻译成扼流圈。去耦电感的作用是滤除线路上的干扰,属于EMC器件,EMC工程师主要用来解决产品的辐射发射(RE)和传导发射(CE)的测试问题。
去耦电感,通常结构比较简单,大都是铜丝直接绕在铁氧体环上。个人觉得可以分为差模电感和共模电感。这里不再赘述共模和差模的概念。
差模电感
差模电感就是普通的绕线电感,用于滤除一些差模干扰,主要就是与电容一起构成LC滤波器,减小电源噪声。
对于220V市电,差模干扰就是L相到N相之间的干扰;对POE来说,就是POE+和POE-之间的干扰;对于主板上的低压直流电源,其实就是电源噪声。
差模电感选型需要注意一下几点:
· 直流电阻、额定电压和电流,要满足工作要求;
· 结构尺寸满足产品要求;
· 通过测试确定噪声的频段,根据电感的阻抗曲线选择电感;
· 设计LC滤波器,可以做简单的计算和仿真。
· 磁珠(Ferrite Bead),也常用来滤除主板上的低压直流电源的噪声,但磁珠与去耦电感有区别的。
·
磁珠是铁氧体材料烧制而成,高频时铁氧体的磁损耗(等效电阻)变得很大,高频噪声被转化成热能耗散了;
· 去耦电感是线圈和磁芯组成,主要是线圈电感起作用;
发糕机· 磁珠只能滤除较高频的噪声,低频不起作用;
· 去耦电感可以绕制成较高感值,滤除低频噪声。
磁珠等效电路模型
引申阅读:Understanding Ferrite Beads and Applications
引申阅读:Ferrite Bead Inductors
共模电感
共模电感就是在同一个铁氧体环上绕制两个匝数相同、绕向相反的线圈。
如上图所示的共模电感:
· 当有共模成分流过共模电感时,根据右手定则,会在两个线圈形成方向相同的磁场,相互加强,相当于对共模信号存在较高的感抗;
· 当有差模成分流过共模电感时,根据右手定则,会在两个线圈形成方向相反的磁场,相互抵消,相当于对差模信号存在较低的感抗。
换一个方式理解:当V+上流过一个频率的共模干扰,形成的交变磁场,会在另一个线圈上形成一个感应电流,根据左手定则,感应电流的方向与V-上共模干扰的方向相反,就抵消了一部分,减小了共模干扰。

本文发布于:2024-09-24 14:24:41,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/180629.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:电感   电流   线圈   磁场   频率
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议