碳纤维及其复合材料

www.123ctCT
纤维及其复合材料研究进展
摘要:本文简述了碳纤维的基本特性及其制造方法,并阐述了不同基体碳纤维增强复合材料的性能与制备工艺,以及当前碳纤维增强复合材料的研究应用现状,并展望其未来的发展方向。混炼机
关键词:碳纤维 结构与性能 增强复合材料
碳纤维(carbon fiber)它不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维。与传统的玻璃纤维(GF)相比,杨氏模量是其3倍多;它与凯芙拉纤维(KF-49)相比,不仅杨氏模量是其2倍左右,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性出类拔萃。有学者在1981年将PANCF浸泡在强碱NaOH溶液中,时间已过去30多年,它至今仍保持纤维形态。碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能。此外,还具有纤维的柔曲性和可编性。碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用。因此碳纤维及其复合材料近几年发展十分迅速。
1碳纤维的结构、特性以及分类
碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。其是由含碳量较高,在热处理过程中不熔融的人造化学纤维,经热稳定氧化处理、碳化处理及石墨化等工艺制成的。
碳纤维是纤维状的碳材料,由有机纤维原丝在1000℃以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料。
碳纤维的结构取决于原丝结构和碳化工艺, 但无论用哪种材料, 碳纤维中碳原子平面总是沿纤维轴平行取向。用x-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构,如图1-1。构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面。在层平面内的碳原子以强的共价键相连,其键长为0.142 1 nm;在层平面之间则由弱的范德华力相连,层间距在0.336~0.344nm之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐。处于石墨层片边缘的碳原子和
层面内部结构完整的基础碳原子不同。层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性比较高。
              图1-1 碳纤维结构示意图
碳纤维主要具备以下特性:
(1) 密度小、质量轻,碳纤维的密度为1.5-2g/cm3,龙灯制作相当于钢密度的1/4、铝合金密度的1/2
(2) 强度、弹性模量高,其强度比钢大4-5,弹性回复为100%
奥沙利(3) 热膨胀系数小, 导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;
(4) 摩擦系数小,并具有润滑性;
(5) 导电性好, 25℃时高模量碳纤维的比电阻为775Ω·cm,高强度碳纤维则为1500Ω·cm
(6) 耐高温和低温性好,3000℃非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软也,不脆化;耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀。除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性。
碳纤维根据原料不同,可以分为聚丙烯腈基碳纤维、黏胶基碳纤维和沥青基碳纤维三种。
碳纤维主要经过原料的聚合,纺丝,预氧化,炭化和石墨化之后即可制得。聚丙烯腈溶液聚合、乳液聚合、悬浮聚合和本体聚合,通过湿法纺丝或者是干喷湿纺法纺丝制得原丝。黏胶基碳纤维的制备工艺流程具体如图1-2所示。
1-2 生产黏胶基碳纤维的工艺流程示意
2 碳纤维增强复合材料
2.1 碳纤维增强复合材料的结构与性能
纤维增强基复合材料是由碳纤维织物增强碳或石墨化的树脂(包括沥青)碳以及化学气相
沉积碳所形成的复合材料,简称碳-碳复合材料。它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。
碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。
1)密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200℃时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现“假塑性效应”即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 
(2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 
(3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固
体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部,C-C材料是一种升华液压压力机-辐射型材料。
2.2加工方法及工艺研究
碳纤维增强复合材料一直是被区分为长(连续)纤维和短纤维来加工的,从典型的300400米到几个毫米分为不同的品级。过去10年中,人们一直在改进不同种类的碳纤维复合材料的性能和加工方法,从短纤维混料注射加工到层压成型,从预浸料处理到模塑法加工,力求为这种性能优良的材料寻到最佳的加工
方法。
2.2.1 手糊成型工艺
手糊工艺的最大特是以手工操作为主,适于多品种、小批量生产,且不受制品尺寸和形状的限制。但这种方法生产效率低、劳动条件差,且劳动强度大; 制品质量不易控制,性能稳定性差,制品强度较其他方法低。如图2-1溴代环丙烷所示:
                图2-1 手糊工艺图
2.2.2 树脂传递模塑 RTM
RTM是一种适宜多品种、中批量、高质量符合材料制品的低成本技术。目前,在发达国家里复合材料工业已由“产量大、消费大”步入“个性化、高级化、产量中等”阶段,这也正适合“个性化、高级化、产量中等”要求的树脂传递模塑(RTM)工艺,从而使其获得蓬勃发展。如图2-2所示:
                图2-2 树脂传递模塑成型工艺
2.2.3 喷射成型工艺
喷射成型是通过喷将短切纤维和雾化树脂同时喷射到开模表面,经辊压、固化制取复合材料制件的方法。它是为改进手糊成型而创造开发的一种半机械化成型技术。喷射成型对
原材料有一定的要求。如树脂体系的黏度应适中(0.3 0.8Pa·s),容易喷射雾化、脱除气泡、润湿纤维而又不易流失以及不带静电等。制品纤维含量控制在28%33%,纤维长度2550mm。其优点是生产效率比手糊提高24倍,劳动强度低,可用较少设备投资实现中批量生产,材料成本低;制品整体性好,制件的形状和尺寸不受限制;可自由调节产品壁厚、纤维与树脂比例。主要缺点是现场污染大,树脂含量高,制件的承载能力低。

本文发布于:2024-09-22 13:26:05,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/177785.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:碳纤维   材料   纤维   复合材料   结构
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议