浅谈PLC控制的变频器恒压供水系统

浅谈PLC控制变频器恒压供水系统
摘要:随着PLC以及变频器技术的发展,使用PLC以及变频器等等较为先进的技术,进行变频器恒定水压供水控制,同时也是恒压供水技术革新的必然发展趋势,基于此,本文探讨了PLC控制的变频器恒压供水系统。
关键词:PLC;变频器;恒压供水
  引言
随着人们生活水平的不断提高,对于用水的需求量和要求也越来越高。随着计算机技术和向工业和民用领域的不断渗透,几乎所有领域都在使用计算机技术,在计算机技术中加入自动控制系统能够使控制更加灵活多变,直观性强,控制精度高,不需要浪费大量的劳动力,因此计算机自动控制系统在国民生产和生活的各个领域中得到了广泛的应用。
1、系统的控制要求
恒压供水是指在供水网中用水量发生变化时,需要保持出水口压力不变的供水方式。供水网
系出口压力值是根据用户需求确定的。传统的恒压供水方式是采用水塔、高位水箱、气压罐等设施实现的。随着计算机控制技术、变频调速技术和PLC技术的日益成熟和广泛的应用,利用先进的控制算法和智能的控制设备有机结合组成的自动供水系统以其良好的性能和操作性受到了越来越多用户的青睐。
2、恒压供水系统的构成
PLC变频恒压供水系统的恒压变流量供水功能,是通过变频器、PLC、接触器和继电器对水泵运行状态进行有效控制而实现的,其中系统的核心是PLC和变频器。在运行设备时,水泵的出水管处设置一个压力传感器,实现对管网的压力进行实时监控,并将监控信号传输至PLC,再由PLC将这一反馈信号与压力设定值进行比较、PID金属磷化运算等处理后,输出标准的控制信号至变频控制器的模拟信号输入端,控制变频器的输出频率,进而对水泵电动机的转速进行控制,并确保其转速与管网内所需流量的一致性,以此实现恒压变量供水的最终目的。
图一 ab胶管变频器恒压供水系统
3、控制器件的选择
3.1PLC可编程控制器
水泵M1M2M3M4可变频运行也可工频运行,通过8个交流接触器实现4台泵的工频和变频运行切换。每个接触器需接入PLC两个输入点(接触器状态的常开和常闭点),一个输出点(线圈控制)8个交流接触器共需要16个输入点,8个输出点。4台电机的热继电器需4个输入点;变频器控制需要4个输入点(运行、准备好、故障和报警)5个输出控制点(电源接触器、启动/停止、恒速1、恒速2、斜率)。因此,本恒压供水系统共需数字输入点24个,数字输出点13个,选用西门子S7200(CPU226XP)PLC即可满足要求, PLC自带24DI输入和16DO输出。另外,需要3个模拟量输入回路:管网出水压力信号、水箱水位信号、变频器运行频率反馈信号;1个模拟量控制回路:变频器转速给定信号。选配1PLC的扩展模块EM235,配置有412位的模拟量输入口和112位的模拟量输出口,可以满足模拟量的输入输出需要。3路输入1路输出,管网出水压力和水箱水位信号为420mA的电流模拟量信号,变频器频率控制和反馈输入/输出采用的010V的电压模拟量信号,直接接入EM235模块。
3.2、硬件系统构建
3.2.1、设备组成
系统主要硬件及其设备包括:PLC及其扩展模块、变频器、水泵机组、压力变送器、液位变送器。PLC是系统实现恒压供水的主体控制设备,本系统采用西门子公司S7-200系列PLC,它执行速度快,抗干扰能力强,性价比较高,比较经济实惠。PLC与上位机之间的通信采用PC/PPI电缆,支持点对点接口(PPI)协议,PC/PPI电缆可以方便实现PLC的通信接口RS485PC机的通信接口RS232的转换,用户程序有三级口令保护,可以对程序实施安全保护。根据控制系统实际所需输入输出端子数目,考虑PLC端子数目要有一定的预留量,因此根据系统需求选用S7-200PLC的主模块为CPU226,另外系统需要1个模拟量输入点和1个模拟量输出点,所以需要扩展模块,扩展模块选择EM235。变频器我们选用西门子公司的MM440,该变频器足够高实现系统的变频调节功能,且质量可靠、功能齐备。
3.2.2、电路设计基于PLC的变频调速恒压供水系统
主电路图如图2所示:三台电机分别为M1M2M3,它们分别为1#2#3#水泵。接触器QA1QA2QA3分别控制M1M2M3的变频频运行;接触器QA5QA6QA7景区拍照分别控制M1M2M3的工频频运行;BB1-BB6分别为三台水泵电机过载保护用的热继电器;
QA0QA10QA11QA11壳体加工分别为变频器和三台水泵电机主电路的隔离开关。本系统采用三泵循环变频运行方式,即3台水泵中只有1台水泵在变频器控制下做变速运行以控制供水压力,其余水泵在工频下做恒速运行,在用水量小的情况下,只用一台水泵以变频模式运行供压,当单台变频泵连续运行时间超过3h,则要切换下一台水泵以变频模式运行,此即倒泵功能,这样能够有效避免某一台水泵工作时间过长而造成损失。故此在同一时间内只有一台水泵处在变频模式下运行,但三台水泵可以相互切换轮流做变频泵。
图二 变频恒压供水系统主电路图
3.3、恒压供水的实现
在设计供水泵时,制动出两种控制方式,即自动控制和手动控制。自动控制模式下,PLC在对检测的压力差进行PID调节后,再将调整频率输送至变频器以控制水泵的起停和转速,从而将水压控制在设定范围内,即恒压系统自动控制。在手动控制模式下,控制人员要以手动的形式在上位机上对3台水泵的频率进行设定,再直接启动系统即可。
如果电机的转速达到上限,并保持一定的时间后,水压的反馈值始终未能达到设定值,则
该泵需切换至工频状态,另一台泵则切换至变频状态,随着电机转速的上升,水压反馈值将会达到设定值,此后电机的转速会维持平衡;而一旦无法达到给定值,则按照上述方法,将这几台水泵逐个变频起动,同时工频挂网开始运行。如果其反馈压差大于设定值时电机转速下降,当转速下降至某转速值后,管道中的水压将达到设定值,此时电机转速恒定。若两台电机运行中,其中一台变频,一台工频,电机转速下降到下限值一定时间后,仍超转速,变频泵停车,切换原工频泵到变频运行,电机的转速下降,在电机转速下降到那个设定范围后,水压信号便达到给定值。
3.4、注意事项
变频器要与供水泵相匹配,若变频器频率远大于供水泵功率,会产生控制精度降低、资源浪费的现象发生,整套系统性能也会下降,同样也不能选择变频器频率远小于供水泵功率。线路接好后,要对变频器进行初始参数设置,不准直接运行。对变频器进行快速设置,以确定变频器的工作参数,以对系统进行自动调整,使系统水泵运行数量和负荷相匹配。在实际运行中,要对积分项和比例项的参数进行调整,来确保系统的动态、静态反应速度。为加快反应速度,可增加比例项,再增加积分项,来达到优化响应速度和系统稳定性的目的。
4、结语
系统设计完成后对系统功能进行了测试,系统能够根据管道压力的实时情况与设定值进行比较,并根据反馈结果对水泵转速进行控制,以达到控制管道压力的目的。上位监控软件能够实现系统启、停的控制,手动和自动模式的切换,调整系统的控制参数,显示当前压力、各水泵的工作状态、变频器的频率输出值等参数,系统实现了对整个恒压供水系统的监控。
参考文献:
[1]宋星.基于组态、变频器和绝对值角度编码器PLC控制的恒压供水系统[D].安徽大学,2010.
[2]罗雪莲.PLC控制的变频器恒压供水系统[J].变频器世界,2005,02:97-99.
[3]朱思亮.基于PLC的恒压供水监控系统设计与实现[D].电子科技大学,2013.
[4]陈力,刘永斌.浅谈PLC控制的变频器恒压供水系统[J].工程建设与设计,2011,S1:65-66+69.
>光盘封套

本文发布于:2024-09-21 17:39:08,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/154118.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:控制   水泵   系统   变频器   运行   变频   压力
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议