金属纳米颗粒增强胶体量子点LED发光的理论仿真与实验研究

摘要
发光二极管(Light Emitting Diode, LED)是一种能将电能转化为光能的半导体电子元件。由于其省电,寿命长等优异的光电性能,发光二极管已经被广泛应用于照明、显示、光通信等领域。目前市面上的白光LED,主要是透过在蓝光LED上覆盖一层黄磷光剂制成。荧光转换白光LED技术存在着红光波段转换效率低,退化等缺点。而且,相当一部分白光没有从LED中抽取出来。所以,提升LED性能,不仅要提高内量子效率,而且要提升光抽取效率。另一方面,量子点由于独特的光学性质,在LED照明光源中非常有竞争力。
本论文从数值仿真,理论计算以及实验验证角度论述了基于CdS-CdSe量子点的表面等离子体增强量子点LED发光效率。论文主要研究内容如下:
首先,详细地介绍了格林函数积分法,并结合格林函数积分法和有限元技术的优势提出了一种更高效、更精确地计算单个散射体散射的方法。
其次,用上述方法得到的单个粒子的散射场提取电磁偶极子后,提出了点偶极子理论来求解光学多层薄膜系统中周期性点阵的电磁响应,为周期性等离子点阵提升固态照明系统的光抽取效率提供理论基础。
然后,介绍了胶体量子点的光学特性以及在LED照明应用中独特的优势,分析了胶体量子点LED的一般结构和几种改进的结构。
分集水器最后,研究了实验中金纳米颗粒的合成和转移,阐述了贵金属纳米颗粒的局域表面等离效应,以及增强荧光分子发光的原理。调节LED结构中金纳米颗粒和量子点的位置,优化局域表面等离效应与量子点的耦合效率,测量系统的荧光光谱和时间分辨荧光光谱,验证金纳米颗粒对量子点荧光增强的调控作用。
关键词:发光二极管局域表面等离谐振格林函数积分法超表面有限元
Abstract
LED (Light Emitting Diode) is a kind of semiconductor electronic components that can convert electrical energy into light energy. LEDs have been widely used in lighting, display, optical communication and other fields, because of their excellent photoelectric performance, such as power saving and long life. Currently, white LEDs on the market are mainly fabricated by covering a blue LED with a layer of yellow phosphor. Fluorescent conversion technology of white LED has the disadvantages of low conversion efficiency and degradation of red light band. Moreover, a significant portion of the white light is not extracted from the LEDs. Therefore, to improve LED performance, not only to improve internal quantum efficiency, but also to improve light extraction efficiency.
In this thesis,the surface plasmon enhanced quantum dot LED luminescence efficiency based on Cd
S-CdSe quantum dots is discussed both from the aspects of numerical simulation, theoretical calculation and experimental verification. The main research contents of the thesis are as follows:
Firstly, the Green's function integration method is introduced in detail, and combined with the advantages of Green's function integration method and finite element technology, a method for calculating the scattering of single scatterer more efficiently and accurately is proposed.
Secondly, after extracting the electromagnetic dipole from the scattering field of the single particle obtained by the above method, the point dipole theory is proposed to solve the electromagnetic response of the periodic lattice in the optical multilayer thin film system. Provide a theoretical basis for the periodic plasma lattice to improve the light extraction efficiency of solid-state lighting systems.
医用消毒灭菌Then, the optical properties of colloidal quantum dots and their unique advantages in LED lighting applications are introduced. The general structure and several improved structures of colloidal quantum dot LEDs are analyzed.
Finally, the synthesis and transfer of gold nanoparticles in the experiment were studied, and the local surface plasmon effect of noble metal nanoparticles and the principle of enhancing the luminescence of fluorescent molecules were described. Adjusting the position of gold nanoparticles and quantum d
ots in the LED structure, optimizing the coupling
efficiency between local surface plasmon and quantum dots, measuring the fluorescence spectrum and time-resolved fluorescence spectrum of the system, and verifying the regulation of gold nanoparticles on quantum dot fluorescence enhancement.
Key words:Light emitting diode Localized surface plasmon resonances
Green’s function integral equation Metasurface
Finite element method
目录小型洗衣粉生产设备
无动力清扫器摘要............................................................................................................... I Abstract ............................................................................................................ II 1 绪论
手持式按摩器
1.1 胶体量子点LED研究和发展 (1)
1.2 基于格林函数积分法的光散射模型 (2)
1.3 人造超表面提升LED发光效率的点偶极子理论 (4)
1.4 局域表面等离激元提升荧光物质发光 (5)
1.5 论文主要工作及意义 (6)
2 LED基本理论
2.1 LED发光原理 (8)
2.2 胶体量子点LED (9)
2.3 LED发光效率 (12)
2.4 本章小结 (13)
3 基于有限元的格林函数积分法光散射计算
3.1 格林函数积分法简介 (14)
3.2 基于有限元的格林函数积分方程 (15)
3.3 结果与讨论 (19)
3.4 本章小结 (23)
4 周期金属结构与层状波导结构耦合模型
4.1 单个电磁偶极子的格林函数 (24)
4.2 动态极化率的翁萨格倒易关系 (25)
4.3 二维晶格和平面波激发 (27)
4.4 点偶极子激发 (29)
4.5 远场渐近形式和辐射局域态密度 (30)
4.6 本章小结 (32)
5 金属纳米颗粒增强LED发光实验实施
5.1 量子点与金纳米颗粒制备 (33)
5.2 样品准备与结果分析 (36)
5.3 本章小结 (43)
6 总结与展望 (44)
语音调度系统
致谢 (46)
参考文献 (47)
附录1:攻读学位期间发表论文目录 (53)
附录2:格林函数面积分公式法 (54)
附录3:复杂散射体远场计算MATLAB代码 (55)

本文发布于:2024-09-23 00:41:37,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/150382.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:量子   函数   效率   荧光   发光   表面
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议