单级PFC介绍

单级PFC电路
为减少办公自动化设备、计算机和家用电器等内部开关电源对电网的污染,国际电工委员会和一些国家与地区推出了IEC1000-3-2和EN61000-3-2等标准,对电流谐波作出了限量规定。
为满足输入电流谐波限制要求,最有效的技术手段就有源功率因数校正(有源PFC)。目前被广为采用的有源PFC技术是两级方案,即有源PFC升压变换器+DC-DC变换器,如图1所示。
led间隔柱
两级PFC变换器使用两个开关(通常为MOSFET)和两个控制器,即一个功率因数控制器和一个PWM控制器。只有在采用PFC/PWM组合控制器IC时,才能使用一个控制器,但仍需用两个开关。两级PFC在技术上十分成熟,早已获得广泛应用,但该方案存在电路拓扑复杂和成本较高等缺点。单级PFC AC-DC变换器中的PFC级和DC-DC级共用一个开关管和采用PWM方式的一套控制电路,同时实现功率因数校正和对输出电压的调节。
2、单级PFC变换器基本电路拓扑
2.1单级PFC变换器基本电路
线圈电磁铁
单级PFC变换器通常由升压型PFC级和DC-DC变换器组合而成。其中的DC-DC变换器又分为正激式和反激式两种类型。
图2所示为基本的单级隔离型正激式升压PFC电路。两部分电路共用一个开关(Q1),通过二极管D1的电流为储能电容C1充电,D2在Q1关断时防止电流倒流。通过控制Q1的通断,电路同时完成对AC输入电流的整形和对输出电压的调节。
由于全波桥式整流电路输入连接AC供电线路,瞬时输入功率是随时变化的,欲得到稳定的功率输出,要依靠储能电容实现功率平衡。
对于DC-DC变换器,通常在连续模式(CCM)下工作,占空因数不随负载变化。而全桥整流输出电压与负载大小无关,当负载减轻时,输出功率减小,但PFC级输入功率同重载时一样,使充入C1的能量等于从C1抽取的能量,引起直流总线电压明显上升,C1上的电压应力往往达1000V 以上,对开关器件的耐压要求非常高。由于开关器件的电压高,电流应力大,开关损耗大,并且功率从输入到输出要经两次变换,故效率低。三爪卡盘结构
2.2改进型单级PFC变换器电路为降低储能电容上的高压和变换器效率,必须对图2所示的单级PFC基本电路拓扑进行改进。
一种用变压器双线组实现负反馈的单级PFC变换器电路如图3所示。N1和N2绕组为变压器T1的耦合绕组。当开关Q1导通时,电压VC1施加到T1初级绕组。当经整的电压大于N1上的电压时,升压电感器L1上才会有电流通过。当Q1截止时,加在L1上的反向电压为VC1与N2上的电压VN2之和减去输入电压。N1和N2两个耦合线圈的加入,提供了负反馈电压,减轻了C1上的电压应力,提高了效率。但是,加入N1和N2后,会降低功率因数,增加电流谐波含量。如果在D2与N1之间加入一个电感,使输入电流工作在CCM,C1上的电压还可以降低。银钟花
在图3中。要求N1+N2。
图4示出了带低频辅助开关的CCM单级PFC变换器电路。Q1为主开关,Q2为辅助开关。在输入电流过零附近,Q2导通,使附加绕组N1短路,当输入电压大于某一值时,Q2关断。由于Q2在输入电压很小时才会导通,其余的时间阻断,流过Q2的电流很小,Q2的功率损耗也就很小。这种电路拓扑与图3电路比较,减小了输入电流的谐波含量,提高了功率因数和效率,降低了电容(C1)上的电压。动物胶配方整个过程
图5所示为带有源钳位和软开关的单级隔离式PFC变换器电路。图中,Q1为主开关,Q2为开关,C1为储能开关,C2为钳位电容,Cr为Q1、Q2和电路中寄生电容之和。电路的升压级工作在DCM,从而保证有较高的功率因数。反激式变换器级设计工作在CCM,从而避免了产生较高的电流应力。电路采用有源钳位和软开关技术来限制开关MOSFET的电压应力。存储在变压器漏感中的再生能量,为主开关Q1和辅助开关Q2提供了软开关条件,从而减少了开关损耗,提高了变换器效率。Q1和Q2采用同一控制电路和驱动电路,从而使拓扑结构简化。
3、基于Flyboost模块的单级PFC AC-DC变换器基于Flyboost模块的单级PFC AC-DC变换器电路如图6所示。该变换器建立在反激式升压拓扑基础上,工作状态分反激式变压器状态和升压状态两个工作状态。若Vin(t)为Ac输入电压的瞬时值,Vc1为储能电容C1上的电压,n为变压器T1的电压比,在反激式变压器状态的一个开关周期内,当开关Q1导通时,T1被充电,储存能量;当Q1截止时,由于(Vin(t))<
(Vc1-nVo),D6不能导通,储存在T1中的能量全部传送到输出端。在这种工作状态,全桥整流输出端的变换器输入电流lin波形为直角三角形,平均输入电流lin(avg)为:
在升压电感状态,当时,T1相当于一个升压电感。在一个开关周期内,当Q1导通时,T1初级绕组电感LP经D5充电储能;当Q1关断时,D6导通,在LP中的储能向C1放电,工作情况与一般升压电感型单级PFC变换器相同。在此状态下,平均输入电流可表示为:(2)式中,D 为开关占空比,Ts为开关周期。从式(1)和(2)可知,在两种工作状态下,平均输入电流均与输入电压成正比,从而实现功率因数校正。C1上的电压被钳位在(Vin(peak)+n·Vo)电平上,通常不超过400V。此电路拓扑的功率因数一般可达0.95以上,效率超过80%。4、基于:iW2202的数字单级PFC电路图7所示为基于数字控制器IW2202的单级PFC变换器电路。IW2202采用了脉冲串(pulseTainTM)专有技术和实时波形分析及智能跳越(SmartSkip)技术。IW2202集成了单级PFC变换器控制功能。图7所示的电路桥式整流后边拓扑,为PFC升压与反激式整流器相结合/能量储存/DC-DC(Boost integrated with Flyback Rectifier/Energy Storage/DC-DC,简写为BIFRED)拓扑,利用不连续模式(DCM)升压变换器实现功率因数校正。变压器初级绕组(WP)串联的储能电容C1,用作驱动反激式变换器。电路的工作原理如下:当开关Q1导通时,来自AC线路的能量被储存在升压电感器L1中。与此同时,来自C1的能量被储存在反激式变换器T1的初级绕组中。当Q1关断时,在T1初级储存的能量传送到输出。同时,在升压电感器L1中的能量传输到电容C1,对C1进行充电。在AC线路输入的半周期内,两个电感器(L1和LP)储存的能量平均值相等,从而上使C1上的电压保持不变。用iw2202作为控制器,解决了储能电容上电压应力过高的问题。在通常情况下,C1上的电压不会超过400V,从而C1可选用400V的标准电容器。基于iw2202的全数字SMPS,可以实现单位功率因数(即PF=1)和小于5%的总谐波失真(THD)。
5、结束语单级PFC变换器电路简单,但PFC和对输入电流谐波抑制的效果不如两级PFC变换器。基于全数字控制器iw2202的单级全数字PFC变换器,可以实现接近于1的功率因数,输入电流达到低失真指标,满足IEC1000-3-2规定限值。
四球机单级PFC目前是热门应用,但必须认识到它存在的问题,虽然他把PFC和反激电源结合在一起,但应用起来却要面对安规问题,大家可以把这些电源的恒流恒部分的VCC短路到地,光耦两脚短路会出现
什么现象?利用PWM电源制作恒流LED驱动应是当前最多应用才对,低纹波,完善的多重保护,LED电源才能经得起考验。以上是我个人心得,请尽多指正。由于LED光源的环保和低功率应用可以替代现有的白炽灯和荧光类节能灯及后来发展的三基,CCFL,而使LED驱动电源面临前所未有的发展机遇。但现在所有安规和客户均要求在电源上添加PFC功能,以满足节能需求。其实PFC除了校正了电流波形外,还使初级使用电流实际值下降,在相同功率的用电器上,使用PFC后会使用电电流减少,从而使电表度数相应减少即减少耗能。单级PFC的出现使原来使用在只有在75W以上开关电源中前端的PFC校正电路成为热门应用,单级PFC电路实际由两套电路合成的,前级是单纯的PFC校正电路,主要方式是取电路前端的电压信号和电流信号进行比较,由错误乘法器来校正比较中出现的错位部分。后级就是降压部分,通过变压器的初次级的圈数比使电压下降至所需电压,而变压器初级主绕组相当于PFC电感,隔离后的光耦实际上是调整PIN1的电位,输出部分肖特特基或者快恢复二极管实际上相当于PFC电路的整流二极管(我们常用的MUR460),这就是单极PFC输出电流大以后肖特特基或者快恢复二极管损耗变大的原因,必须用填硅胶方式来使其损耗变小。后极控制部分实际上就是对输出电压和电流进行调整的电路,LM358/AP4310/101AC恒流恒压,限压恒流是目前应用最多的方式。
输入MEF电容是PFC电路压取样,阻容吸收回路,VCC供电电路,L6562D电路,光耦调制PIN1电路,MOS管电路。这些电路与次级的光耦,整流的二极体电路为PFC电路的主体部分,其中任何一个
电路故障PFC电路不工作或者工作不正常。这个电路唯一的功能就是次级短路保护非常灵敏。大家可以看到我们常用的OCP,OVP,OPP保护在这里没有表现出来,如果安规测试中短路次级光耦,恒流IC相临两脚即恒流恒压失效,这个电路中电压电流会升高,输出电容超过额定电压会起爆,FAIL。安规安全上存在巨大漏洞,当然可以通过在MOS管S脚取样,比较后去控制PIN1使PFC电路在可控范围内不至于电压电流失控。而我看到众多工程师照抄ST公司的电路,使很多的LED电源处在危险中。其实PWM电路这么多年已日趋走向成熟,IC内部集成OCP,OVP,OPP 功能,已经完善得无可挑剔,PFC做前级是可以解决10-60W间PFC问题。下面我来揭露一下单
级PFC的很多问题:
1.前级PFC电路THD很容易做到10%左右,而单级PFC只能做到25%左右。
2.浪涌雷击安规问题:前级PFC后有大电容吸收能量,而单级PFC初级却赤裸裸的暴露在电网中,一般做到2KV至少需要两级压敏电阻,目前很多这种电源1KV已很不错了。
3.过流过压过功率保护问题:单级PFC 的IC是一个解决电流失真调制THD的电路,不可能内置这些功能,不过我在网上看到有部分IC 厂商已意识到这个问题,已在IC内尽可能集成这些功能,但还没有经市场检验。不过可以通过限制PIN电平也可以解决这个问题。6.关于纹波电压问题:上面已经讲了,但是会引起纹波电流,而且很大,这样的话在驱动LED时纹波电压会由于LED整流的特性增加驱动LED
的电流,不过很小50mA以内。
4.单级工作频率高,而且属于调频方式,工作在80-150Khz间,这是我目前测到的,,解决EMI问题难解决,这是很多工程师报怨单级PFC头疼的原因。
5.后级恒流问题:目前大家用的后级大部分是LM358,AP4310,TSM101AC或者类似的IC作比较器,单级PFC的纹波是高达3-10V的100Hz波,当初设计这些比较器时没有考虑到我们会用这么高纹波的VCC供电,输入输出端口,这样会引起比较器误读,有时比较器会失效

本文发布于:2024-09-23 20:09:49,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/138704.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:电路   电流   电压
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议