受荷混凝土中钢筋锈蚀速率计算方法

受荷混凝土钢筋锈蚀速率计算方法
王元战;刘恒;周海锋;林陈安攀
【摘 要】为研究荷载对钢筋锈蚀速率及结构耐久性的影响,在潮汐区与盐雾区开展不同荷载条件下氯离子扩散试验,荷载大小分别为无荷载、0.3倍和0.5倍混凝土抗折强度.在混凝土中掺入氯盐,开展不同浓度氯盐条件下的钢筋锈蚀试验.通过氯离子扩散试验得到荷载对氯离子扩散影响系数与荷载大小的关系,修正菲克第二定律中的氯离子扩散系数.钢筋锈蚀试验中测试不同时间下混凝土构件中钢筋的锈蚀电流密度,拟合出钢筋锈蚀电流密度与氯盐浓度和锈蚀时间之间的关系.结合混凝土中考虑荷载影响的氯离子扩散模型与钢筋锈蚀模型,给出荷载作用下混凝土中钢筋锈蚀速率的计算方法.该方法对于海洋环境中荷载作用下钢筋混凝土结构耐久性寿命计算具有重要意义.%To explore the effects of load on steel corrosion rate and structural durability, Chloride diffusion experiments under various load conditions were carried out in tidal zone and salt spray zone. The load sizes were 0 times, 0. 3 times, 0. 5 times the flexural strength. The steel corrosion experiments were conducted in concretes mixed with different concentrations of sodium chloride. The results of chloride diffusion exppds虹吸排水系统
eriments showed the relationship between chloride diffusion load coefficient and the load sizes. This could be applied to determine the chloride diffusion coeffients in Fick's second law. The current density of steel corrosion as a function of time were measured in steel corrosion experiments. A model could be be fitted to represent the relationship among the current density, chloride content and time could. The steel corrosion rate in concretes under the action of load could be calculated by pluging the chloride diffusion model and considering loading factor into the steel corrosion model. This method is important to calculate reinforced concrete structure durability under the action of load in marine environment.
【期刊名称】《材料科学与工艺》
【年(卷),期】2015(023)006
【总页数】6页(P12-17)
【关键词】防眩通路灯海洋环境;钢筋混凝土;氯离子;荷载;锈蚀速率
【作 者】王元战;刘恒;周海锋;林陈安攀
【作者单位】水利工程仿真与安全国家重点实验室(天津大学) ,天津300072;高新船舶与深海开发装备协同创新中心,天津300072;水利工程仿真与安全国家重点实验室(天津大学) ,天津300072;高新船舶与深海开发装备协同创新中心,天津300072;江苏省交通规划设计院股份有限公司,南京210014;中交第四航务工程勘察设计院有限公司,广州510230
【正文语种】中 文
【中图分类】TU528
在沿海工程中,钢筋混凝土结构被大规模使用,钢筋混凝土耐久性问题是工程设计与建造中不可忽视的一大问题.混凝土中钢筋锈蚀速率模型是实现钢筋混凝土结构耐久性寿命评估和预测的关键之一.海洋环境下当钢筋表面氯离子浓度达到临界值时,钢筋钝化膜破坏,在水和氧气共同作用下钢筋发生锈蚀[1].Liu[2]通过试验发现,钢筋锈蚀速率随钢筋表面氯离子浓度增大而增大. Francois等[3]初步研究发现,氯离子在受拉混凝土中的渗透显著大于受压混凝土中的渗透.可见,混凝土所受荷载对钢筋锈蚀速率及其耐久性寿命有一定影响.
何世钦等[4]认为,钢筋混凝土构件都是负载工作的,未加载试件锈蚀试验得到的结论不能全部反映实际结构中的钢筋锈蚀情况.顾绳仁[5]研究表明,荷载对钢筋锈蚀有明显影响,荷载作用引起混凝土细微结构变化,进而对氯离子在混凝土中的扩散系数产生影响,从而影响钢筋锈蚀速率.张俊芝等[6]研究得出,混凝土中钢筋初始锈蚀时间随着压应力的增加而延长.但是,现有的研究均未得出荷载作用下钢筋锈蚀速率的计算方法.
由于现有的研究缺乏荷载作用下氧气和水分的扩散模型,本文只考虑氯离子传输这一影响因素,对钢筋锈蚀速率进行近似计算.故本文通过在室内环境下内掺不同含量的氯盐加速钢筋锈蚀的试验,得出钢筋锈蚀电流密度与钢筋表面氯离子浓度、时间的关系.结合前期完成的受荷混凝土中氯离子扩散试验,将荷载作用下钢筋表面氯离子浓度代入钢筋锈蚀模型,从而计算出荷载作用下钢筋锈蚀速率.通过计算荷载作用下某高桩码头基桩耐久性寿命,说明荷载作用对海洋环境下钢筋混凝土结构耐久性寿命有一定影响,在进行结构设计时需要考虑.
试验共浇筑了40根尺寸为100 mm× 100 mm×400 mm的素混凝土梁.混凝土配合比及性能见表1.浇筑完成后,所有试件在混凝土标准养护箱中养护24 h后拆模,接着在饱和氢氧化
钙溶液中养护28 d.开始试验之前,留出上表面作为混凝土的渗透面,其余面用环氧树脂密封.
选择三分点自锚加载法作为本次试验加载方式[7],采用2种荷载水平进行加载分别模拟拉应力区和压应力区.荷载大小分别为无荷载、抗折强度的30%、抗折强度的50%,加载装置示意图见图1.
将试件分别放置在多功能海洋环境自动化模拟试验设备的主腐蚀箱和盐雾箱中,分别模拟水位变动区的潮汐循环和盐雾区的氯离子扩散环境.测试时间分别为35、70、120、180 d.
采用多功能混凝土钻孔取芯机钻取直径为10 mm的芯样,并沿深度方向每隔5 mm分层对芯样取混凝土粉末.通过CL-E氯离子含量快速测定仪测量其浓度,具体试验分析见文献[8].根据Fick第二定律的解析模型,对试验数据进行非线性回归拟合,得到如下公式.
根据氯离子扩散模型[9]
提出荷载作用下氯离子扩散系数公式[8]
以及f(δ)计算公式:潮汐区拉应力,
displayport转hdmi潮汐区压应力,
盐雾区拉应力,
盐雾区压应力,
式中:Cs为混凝土表面氯离子浓度;Dc为氯离子扩散系数;D0为28 d时氯离子扩散系数;m为常数;δ=P/Pu;P为混凝土所受的实际应力,Pu为混凝土构件的抗折强度;f(δ)为荷载对氯离子扩散的影响系数;t为氯离子开始渗透的时间.
将式(2)~(6)代入式(1)即可计算荷载作用下的氯离子扩散系数.syk-214
2.1 试验材料及参数
试验共制作24个100 mm×100 mm×200 mm的混凝土梁,水泥选用天津水泥厂生产的42.5普通硅酸盐水泥,细骨料为细度模数2.6左右的河砂,粗骨料为最大粒径20 mm的碎石,钢筋选用长250 mm、直径16 mm的HRB335钢筋,钢筋保护层厚42 mm.混凝土配合比及力学性能见表2[10].
太阳能沼气池
本试验为了简化人工气候环境控制,采用内掺法将氯盐掺入混凝土内搅拌.这样在混凝土构件养护硬化时,钢筋钝化膜已经开始破坏[11].
将试件依次编号A~H,分为8个组,每组3个试件,每组分别掺入占水泥质量0、1.0%、1.5%、2%、3%、4%、5%、5.5%的NaCl,试件编号及数量见表3,每个编号对应的构件数量均为1个.
2.2 试件制作
截取24根长度250 mm、直径16 mm的HRB335钢筋.在钢筋一端焊接电线,为防止焊点及裸露钢筋与空气接触腐蚀,将焊点及裸露的钢筋用环氧树脂密封[1,12].
将浇筑完成的试件放入混凝土标准养护箱中养护24 h后脱模,并立即给试块编号,随后将试件放入饱和氢氧化钙溶液中养护28 d.养护完成后,取出试件放置在室内环境下,并用塑料管垫高,保证底部空气流通.
2.3 试验仪器
该试验采用的CS354电化学工作站由武汉科斯特仪器有限公司生产.目前常用来表征钢筋锈蚀程度的参数主要分为反映钢筋平均锈蚀程度的参数和反映钢筋局部坑蚀程度的参数[11],本文主要研究钢筋混凝土耐久性寿命,所以选用钢筋平均锈蚀程度的参数来对钢筋锈蚀程度进行评价.通过测量钢筋腐蚀的自然电位(Ecorr)、混凝土电阻率(ρ)、腐蚀电流密度(icorr),来评价钢筋腐蚀状况和腐蚀速度[13].
本试验选用将参比电极与辅助电极直接放置外部的试验方式,如图2所示,其中工作电极即为钢筋,辅助电极为中心开圆孔的不锈钢矩形薄钢片,其大小为100 mm×200 mm,参比电极为饱和甘汞电极,阴影部分为混凝土试件.
2.4 钢筋腐蚀电流密度的测量
本试验用含NaCl溶液的海绵垫提高辅助电极与混凝土间的接触,溶液中NaCl质量分数为1%.利用线性极化方法,从养护完成后第7天开始每周测量一次不同氯盐掺量的混凝土构件中钢筋的极化电阻,并记录钢筋的锈蚀电流密度,直至第98天.
具体动电位线性极化试验参数设置如下[14]:采用相对于开路电位±10 mV的极化区间.
极化方向从相对于开路电位+10 mV至-10 mV.采用10 mV/min的扫描速率.极化时间为120 s.
3.1 钢筋锈蚀速率时变过程
已知钢筋锈蚀速率和钢筋锈蚀电流密度成正比[15],在后文中,用钢筋锈蚀电流密度表征钢筋锈蚀速率.
不同氯盐含量的混凝土中钢筋锈蚀电流密度变化规律如图3所示,横坐标以养护28 d完成开始计算.由图3可以看出,混凝土内的钢筋锈蚀速率经历了锈蚀初期的下降阶段以及保护层开裂前的平稳发展阶段.
3.2 钢筋锈蚀速率模型
3.2.1 钢筋锈蚀电流密度与氯离子含量变化关系曲线
图4为不同时刻钢筋锈蚀电流密度与混凝土中氯离子含量(占水泥质量分数)关系曲线.从图4可以看出,在其他条件相同时,氯离子含量越高,钢筋锈蚀电流密度越大.
3.2.2 拟合经验公式
由图3可以看出,钢筋锈蚀速率初期减少较快,逐渐趋于稳定,选择指数小于0的幂函数拟合钢筋锈蚀电流密度与时间关系y=axb(b<0);由图4可以看出,钢筋锈蚀电流密度随着氯离子含量增长而增长,选用指数大于零的幂函数拟合锈蚀电流密度与氯离子含量关系y=axb(b>0).
对幂函数y=axb线性化,利用试验所测数据进行多元线性回归得钢筋锈蚀电流密度与氯离子含量、时间之间的关系为
皂液盒式中:i为锈蚀电流密度,μA/cm2,用来表示锈蚀速度;t′为混凝土内钢筋开始锈蚀后的天数,d;w(Cl-)为钢筋表面混凝土中氯离子质量分数,以水泥重计,%;R为相关系数.
4.1 荷载作用下钢筋锈蚀电流密度计算
将式(1)代入式(7)可得,荷载作用下钢筋锈蚀电流密度计算公式为
式中:i′为荷载作用下钢筋锈蚀电流密度,μA/cm2;tcr为钢筋开始锈蚀的临界时间,d;t′为混凝土内钢筋开始锈蚀后的时间,d.
4.2 钢筋开始锈蚀时间tcr计算
钢筋开始锈蚀时间计算式为
式中:tcr为钢筋表面氯离子浓度达到钢筋锈蚀临界值的时间;C(x,tcr)由式(1)~(6)计算可得;Ccr为临界氯离子浓度,以质量分数计.
4.3 混凝土保护层锈胀开裂时间ta计算[11]
采用弹性力学方法,考虑混凝土环向不均匀拉应力,混凝土保护层开裂时刻钢筋锈胀力为[11]

本文发布于:2024-09-24 03:28:05,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/137425.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:钢筋   锈蚀   混凝土   氯离子   荷载   试验
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议