氢能工业现状、技术进展、挑战及前景

氢能工业现状、技术进展、挑战及前景引言
近年来,全球各地极端天气频发,为了实现到21世纪末控制全球升温在2 ℃以内的目标,世界各国正全方位努力推动能源体系向化石能源低碳化、无碳化发展。尤其是在当前全球地缘政治复杂和局部地区爆发冲突的背景下,将重塑全球传统化石能源与新能源的生产与消费版图,传统煤炭与油气能源消费占比可能有所回升,新能源时代将提速加快到来。各国将重新认识能源安全的极端重要性,能源生产与消费的被重视程度将提升到前所未有的高度并重新布局,新能源技术革命与产业化将备受重视并进一步提速发展。
氢气能源(以下简称氢能)作为一种可再生的、清洁高效的二次能源,具有资源丰富、来源广泛、燃烧热值高、清洁无污染、利用形式多样、可作为储能介质及安全性好等诸多优点,是实现能源转型与碳中和的重要能源。氢能技术不断成熟,逐渐走向产业化,同时伴随着世界面对气候变化和自然灾害加剧的压力持续增大,氢能得到了世界各国的重点关注,已成为许多国家能源转型的战略选择。
据国际能源署(IEA)《Global Hydrogen Review 2021》报告和中国《氢能产业发展中长期规划(2021—2035 年)》的数据,全球年产氢气9 000×104 t左右,其中我国氢气的年产量为3 300×104 t(达到工业氢气质量标准的约  1 200×104 t)。据
H2Stations对全球加氢站的统计报告,2021年全球新增加氢站142座,累计达到685座,其中亚洲保有量
33ri
居第一,共有363座且集中在中日韩三国;欧洲共有228座且集中在德国、法国、英国、瑞士和荷兰。全球已经有超过20个国家或联盟发布或制定了《国家氢能战略》,美国很早就看好氢能在未来能源系统中所具有的得天独厚的地位和优势,积极抢占氢能产业链的市场空间和各技术环节的制高点。欧盟早期通过清洁能源立法,支持氢能发展与燃料电池。日本政府早在2017年就提出了“要领先全球,实现氢能社会”的战略,并出台了《氢能源基本战略》。中国在2020年将氢能纳入“十四五”规划及2035愿景,助力我国“碳达峰、碳中和”战略目标(以下简称“双碳”目标)的实现。尤其是,我国幅员辽阔,具有丰富的太阳能、风能、潮汐能等可再生能源资源,已建成的可再生能源装机容量位居全球第一,在清洁低碳的氢能供给上具有很大的潜力。在今年北京成功举办的第24届冬季奥林匹克运动会(以下简称北京冬奥会)上,我国秉承绿办奥理念,将绿氢气作为火炬燃料,让世界看到了中国兑现减排承诺的诚意与努力[1]。当前,我国已开启氢能产业顶层设计,地方政府与企业积极参与氢能布局,氢能技术链逐步齐全完善,氢能产业链也正在逐渐形成,“氢能中国”战略已悄然浮现。
为了给氢能相关产业加快发展和能源公司加速转型提供理论支持,并为构建“氢能中国”提供依据和参考,阐述了氢产业链中制备、储运、应用等重点环节主要关键技术进展,分析了氢能工业
化现状与发展趋势,探讨了氢工业发展所面临的挑战,展望了氢能产业的发展与未来,以期加速未来全球碳中和目标的实现。
车载mp3播放器
1 氢能制备
氢能产业链分为制氢、储氢、运氢、加氢、用氢等环节。其中,制氢技术包括化石能源制氢、电解水制氢、工业副产氢和可再生能源制氢,以下分述之。
1.1 化石能源制氢
化石能源制氢是指利用煤炭、石油和天然气等化石燃料,通过化学热解或者气化生成氢气。化石能源制氢技术路线成熟,成本相对低廉,是目前氢气最主要的来源方式,但在氢气生产过程中也会产生并排放大量的二氧化碳。因此所制得的氢气产品被称为“灰氢”。借助于碳捕集与封存技术(CCS),可以有效降低该制氢方式的碳排放量,将“灰氢”转变为“蓝氢”,以实现未来能源的可持续发展。预计在未来相当长一段时间内,化石能源制氢仍然将是氢气的最主要来源方式。
负压引流球1.1.1 甲烷制氢
甲烷(CH4)作为天然气的主要成分,在所有碳氢化合物中具有最高的氢元素占比。因此以天然气为原料的甲烷制氢方法具有高制氢效率、最低的碳排放量、适用于大规模工业产氢等优点。甲烷制氢技术主要包括蒸汽重整法(SRM)、部分氧化法(POM)、自热重整法(MATR)、催化裂解法(MCD)。
第n个空间目前主要的甲烷制氢技术路线及其优缺点对比如表1所示。从表1可以看出:①SRM是在750~920 ℃
高温和3.5 MPa高压条件下,使用Ni/Al2O3催化剂,将甲烷和蒸汽催化转化为氢气和碳氧化物[2],该工艺主要包括重整气或合成气的生成,水煤气变换(WGS)和气体净化等主要步骤,技术成熟;②POM是将蒸汽、氧气和甲烷转化为氢气和碳氧化物,根据与氧气或蒸汽的反应分为催化与非催化重整,在催化过程中,热量由受控燃烧提供,甲烷的热效率通常介于60%~75%[3];③MATR是将放热的POM 反应与吸热的SRM反应联用,通过反应体系自供热来增加氢气产量,降低成本[4];④在MCD反应中,氢气的唯一来源便是甲烷本身,无需另外引入蒸汽和氧气,不会产生碳排放量且能耗更低[5]。综上可知,以SRM为基础,协同发展POM、MATR和MCD,借助于高活性催化剂研发、反应装置改进等方面的技术突破,体现效率与经济性的综合优势,是甲烷制氢技术发展的趋势。
三基光源
1.1.2 煤制氢
分液罐煤制氢主要工艺是将煤与氧气或蒸汽混合,在高温下转化为以H2和CO为主的混合气,后经水煤气变换(WGS)、脱除酸气、氢气提纯等流程,获得具有高纯度的氢气产品[6]。煤气化制氢过程中主要发生的有效反应如下:
在煤气化制氢的WGS变换步骤中,不仅需要催化剂具有可靠的活性和寿命,而且由于煤中含有硫元素,对催化剂的抗硫能力亦提出了额外的要求。采用Co-Mo催化剂体系的宽温耐硫变换工艺具有卓越
的抗硫能力与宽适用温度范围(200~550 ℃),目前被广泛用于煤气化制氢系统中。经WGS 变换后,气体产物主要通过低能耗的低温甲醇清洗,同时实现对CO2和含硫气体的脱除。
煤制氢技术发展已经有200余年,技术已相当成熟,是目前最经济的大规模制氢技术之一,尤其适合于诸如中国等化石能源结构分布不均、多煤炭而少油气的国家。煤炭资源的丰富储量和低成本使得煤气化制氢工艺具有更好的经济优势,其产氢成本仅为8.3~19.5元人民币(下同)/kg[7]。但该技术所需设备投资随着煤制氢规模的扩大而上升,这一点也不容忽视;此外,大量CO2与含硫污染物的排放也是一大困扰。为了降低能耗、提高煤制氢效率,煤超临界水气化将是煤制氢技术的关键攻关方向[8]。

本文发布于:2024-09-21 12:31:39,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/122858.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:制氢   氢能   能源   氢气   技术   具有   全球   发展
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议