高分子及高分子聚合物特性综述

      高分子及高分子聚合物特性综述
 
               
               
  年级:11级物理(2)班
                  姓名:彭传梦
                  学号:20111041214
摘要: 聚合物(开关信号英语Polymer)是指具有非常大的分子量的化合物,分子间由结构单位structural unit)、或单体经由共价键连接在一起。这个字眼(polymer)是出自于希腊字:polys代表的是多,而meros 代表的是小单位(part),所以很多小单位连结在一起的这种特别的分子,我们称之为聚合物[2]。需要更多的资讯,可以参考塑胶DNA高分子
关键字:高分子  聚合物    应用  有机合成    无机合成  聚合物反应机理    导电聚合物
引言:大多数聚合物的研究都会被分类在聚合物科学中,其次被分类在包含了化学(特别是与有机化学),物理学和工程学的材料科学的研究中。聚合物科学粗略分成两门次学科
总括来说,聚合物科学的领域包含了合成、化学处理和自然聚合物的改造。 虽然如此,但有关于生物上常见的聚合物,包括它们的结构、功能及合成方法等却多属于生物学、生化学及生物物理学的范畴当中。这些学科应用了不少聚合物科学中的专有名词,特别是在讨论有关合成脱氧核糖核酸及多糖的反应机理的时候。当一些分子拥有非常广泛、或特别的生物上的功能时,它们就很少会使用聚合物科学的字汇去形容。例如蛋白质就很少会以共聚物去称呼。
聚合物的合成,聚合物有三种重要的合成方式:
1.在工厂或实验室的有机合成节能
2.在细胞和器官中的生物合成
3.化学方式改良天然聚合物
1907年,利奥·具克兰透过精确地控制温度压力,把苯酚甲醛聚合,成为第一个完全用合成方式制造的聚合物,酚醛树脂。其后华莱士·卡罗瑟斯Wallace Carothers 1920年展示了聚合物可透过由构成它们的单体合成,例如自然界中的多糖就可由单糖单体聚合而成,由此聚合物合成就得到长足的发展。大部份市面上重要的聚合物都是透过有机合成的反应机理,大容量地合成的。
实验室中的合成方法大致上可分成两个类别:
1.卡罗瑟斯分类法
  加成聚合反应
离合器盘2.聚合反应机理分类法
连锁聚合反应
逐步聚合反应
卡罗瑟斯分类法受到早年聚合科学家的广泛应用,因为这个分类只集中在单体及生成物的
关系上。实际上由卡罗瑟斯提出,并一直沿用多年。但这个分类却忽略了聚合过程中的反应机理,致使部份聚合物无法被正确分类(例如聚酯本身就可以同时透过缩合聚合、加成聚合及开环聚合等方法达成)。因此后来的聚合科学家多用聚合反应机理分类法
聚合物结构与性质:
聚合物的性质可根据它们的大小,广义地划分为几个类别。只有微观体系大小的聚合物,主碳键主导了它们的性质,因此可视为简单的聚合物结构。当他们的大小达至介观体系的时候,它们的性质多形容在三维空间下的聚合物基。若然是宏观体系,则指它们的块状行为
结构有关于聚合物结构上的特性,最主要是与其单体在主碳键上的实际铺排有关。这些结构促使很多聚合物不同的特性,例如同是线性排列的聚合物,它是否能与水混溶就取决于它的单体是否有带极性的单体(如环氧乙烷)或非极性的单体(如苯乙烯)。与此同时,两种具有完全相同单体的聚合物,例如一些天然橡胶,也可以因为很少的原因而呈现不同的持久性。聚合物科学家们已掌握了准确的字汇去表述单体的性质及其他相关的布置:
相同的单体组成某特定聚合物的单体的性质,往往也是聚合物本身最重要的性质。聚合物的命名多也是根据它们的单体去订定的。只由一种特定的单体组成的聚合物,称作同聚物;而由不一样的聚合物组成的,则称为共聚物聚苯乙烯,也就是只以苯乙烯作为单体的聚合物,就是一种同聚物;乙烯-醋酸乙烯酯,由多于一种的单体聚合而成,因此就被分类为共聚物。有些生物聚合物,由结构相似但实质上有轻微不同的单体所组成,例如由不同的核苷酸聚合而成的聚核苷酸,也为了方便而统称了,而不会把每种单体的名称列出。
聚电解质指由带离子性官能机团的重复单位聚合成的聚合物,使其于水溶及熔融状态下可导电;离子聚合物就是聚电解质的其中一种,不过具有离子性的重复单位数目少于15%。虽然于水溶及熔融状态下未能导电,但在加热后却有导电的效果
导电聚合物聚合物之单体重复连接时,因为π电子轨域相互影响,使能带变小,因此可以达到半导体,甚至导体的性质。另外由于共振结构,比起一般聚合物可以耐高温,并且拥有光电性质,像是导电率、电容率
主体:
制备方法:因为属于有机化合物,有很多种合成导电高分子的方法,可分为直接和间接两种。
间接:先行聚合反应生成非共轭聚合物(非导电高分子),称为前导物质,再行缩合反应或是异构化生成导电聚合物。直接:直接聚合又可分为链增长聚合(Chain-growth polymerisation)和逐步生长聚合(Step-growth polymerisation)
链增长聚合是利用不饱和单体分子同时行加成反应结合。
方程式:
逐步生长聚合同样从单体分子聚合,但差别在于单体分子会先反应成二聚体、接着三聚体、再来低聚体、最后才反应生成高分子聚合物,并不是一步就合成聚合物。
抗拉强度
材料的抗拉强度量化了材料可以在破裂前承受多大的应力。对于依赖聚合物强度或耐久性的某些应用,抗拉强度是很重要的。举个例子,具有高抗拉强度的橡胶绳可以在断裂前承受极大的重量。一般而言,抗拉强度会随着聚合物的链长加长而增加。
杨氏模量
这个参数量化了聚合物的弹性。在相对较小的应变下,仍在弹性变形的范围中,应力与应变的的比值。在包含物理性质的聚合物应用里,杨氏模量与抗拉强度一样重要。
传输性质
传输性质是有关分子们如何快速的穿过聚合物本体。这个性质在聚合物薄膜与半透膜的应用中,非常重要。
熔点
熔点在聚合物中,并不是指固-液的像变态,而是从结晶态或是半结晶态转换成非晶质态。
尽管缩写是"Tm",更准确的说法应该称之为"结晶熔化温度"废钯碳回收钯技术。在合成聚合物之中,熔点只在热塑性塑胶,而热固性塑胶在高的温度会分解,而不是于熔化。
沸点
聚合物没有所谓的沸点,因为聚合物在加热到达理论的沸点温度前就会先分解了。
玻璃转化温度
在聚合物中有一个有趣的现象,描述非晶质聚合物(amorphous polymers)从黏的、橡胶状(rubbery)经过二阶相转换成脆的、玻璃状(glassy)的一个参数,称之为玻璃转化温度(Tg)。玻璃转化温度可利用改变分支的阶数、在聚合物中交连或加入塑化剂(plasticizer)来控制。
弹性模量与温度的关系碳浆
普通非晶态高分子材料的弹性模量与温度相关。在低温情况下,高分子链处于冻结状态,主要运动形式是高分子链段的小范围运动和振动。此时高分子模量和硬度较高,称为玻璃
态。当温度达到一定范围时,高分子材料的模量迅速下降,甚至可能会降低到低温状况的千分之一。这标志着链段开始大范围运动,高分子材料表现出高弹性特征。这一温度称为玻璃化转变温度。进入高弹态区域后,如果温度进一步提高,高分子的弹性模量会进一步降低。这表明高分子链间缠结打开,发生运动,高分子表现出流动性,称为粘流态。
交联的非晶态高分子由于内部形成网络结构,所以高分子链不能流动,不会表现出粘流态,会保持一定模量直至分解。高弹态也是普通橡胶制品的正常使用状态。能够结晶的高分子材料在玻璃化转变温度之后除了链间缠结提供模量以外,结晶的部分也对模量有贡献,故模量较高。温度升高后,晶体融化,开始表现出流动性,其转化温度成为结晶性高分子的熔点。
玻璃转化与结晶:
玻璃态物质会表现出玻璃转化。玻璃态转化表现出热容上升弹性模量下降的现象。高分子材料中的玻璃态转变有多种理论解释,一般认为在玻璃转化温度(Tg)之下高分子无法进行大规模的运动,只能进行小范围的移动。而在玻璃转化温度之上高分子可以进行大范围的运动。
玻璃转化是一个动力学转变,因此其具体温度同温度变化速度相关。不同高分子材料的玻璃转变温度不同。
很多高分子材料表现出结晶行为。通过结晶高分子可以达到致密排列。典型的易结晶高分子有聚乙烯,聚丙烯,尼龙等。
高分子材料中的弛豫:
玻璃转变通常又被称为转变。在玻璃转化温度之下高分子还会失去其他的小规模可移动性,因此还会存在其他转变。这些转变按照温度从高到低的顺序称为转变。
粘弹性:高分子不同于其他材料的一个特殊性质就是其粘弹性。对于理想弹性物体,完全遵循胡克定律,应力与应变成正比。对于牛顿流体,剪切应力与应变速率成正比。对于高分子来说,既具有弹性特征,又具有粘性特征,并且应力应变的关系与时间紧密相关。常见的例子如应力松弛,蠕变。为了描述其粘弹性特征,常用弹簧(认为完全服从胡克定律)和黏壶(认为完全服从牛顿流体)共同组成一些模型来描述。
应力松弛现象指的是高分子材料在应变保持一定的情况下应力随着时间的推移而减小的现
象。
高分子的蠕变现象是指高分子材料在应力不变的情况下应变随着时间的推移而增大的现象。
微裂纹经常称为银纹,是指在高分子材料内部产生垂直于应力施加方向的细微裂纹的现象。在这种裂纹中会有纳米级的纤维平行于应力施加方向伸展。
疲劳:疲劳是指材料在承受远低于断裂强度的应力强度的反复应力的情况下产生裂纹的现象。
疲劳的产生通常起源于工件内部相对脆弱或者应力集中的区域,如外来夹杂,空隙等。尽管工件整体所受应力小于断裂强度,在这些微小区域可能已经达到断裂强度,结果导致在这些区域产生微小裂纹。在应力反复施加的情况下这些微小裂纹长大最终导致工件破坏失效。
环境因素影响高分子材料的主要环境因素包括日照(紫外光),氧化,水解,温度效应和化学因素影响。高分子制品同的应力或内应力同环境因素共同作用会导致应力腐蚀。应
力腐蚀的特点是只有在环境因素和应力共同作用下才会发生。应力的来源可能是工件在使用过程中收到的外来应力也有可能是工件在加工成型过程中产生的内应力。由于不同工件的使用状态不同,加工过程不同,不同工件的使用环境和应力状态通常不同,因此发生应力腐蚀的可能性也不同。一旦发生应力腐蚀,其原因通常也难以分析。
分子量的确定:
高分子由大量高分子链组成,一般常用高分子的每条链的分子量不同,这决定了高分子的分子量是一个平均值。常用的有数均分子量,重均分子量,粘均分子量等。常用测量方法有渗透压法光散射法,黏度法和GPC法等
高分子的粘均分子量通常可以通过测量高分子溶液的粘度获得,通过黏度计测量黏度,然后通过马克-霍温克方程求出分子量。
GPC是目前常用的一种快速高效的分子量测量办法。该方法可以同时测量分子量和分子量分布。
热性质与力学性质:d570高分子的相变与转变伴随着吸热与,通常使用DSC测试。 高分子材料
的热分解性能通常使用热重分析TGA测试,基本原理是通过将高分子加热,测量加热过程中的质量变化。

本文发布于:2024-09-23 08:12:51,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/121370.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:高分子   应力   温度   材料   单体   合成
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议