一种高纯氢气的制备方法与流程



1.本发明涉及氢气制备技术领域,具体涉及一种高纯氢气的制备方法。


背景技术:



2.煤矿煤层气又称煤层气,其中主要可燃成分是甲烷,它在煤炭形成过程中随之产生。煤矿煤层气抽采可分为地面抽采和井下抽采,其中井下抽采量占总抽采量的70%。然而,由于井下抽采时煤层裂隙漏风严重,导致井下抽采煤层气的ch4浓度普遍偏低(《30%),浓度波动性大,井下抽采的煤层气品质低、不稳定且容易引起爆炸,因此其利用困难,利用率始终不足40%。煤矿低浓度煤层气的清洁高效利用可以促进煤矿煤层气抽采,还可供应数量可观的清洁能源,大幅减少温室气体排放。
3.对低浓度煤层气的清洁高效利用实际上是对甲烷的转化与利用,由于低浓度煤层气中氧含量较高(甲烷与氧气比例接近2:1),通常采用间接转化为合成气的方式来利用,再将合成气催化转化为低碳醇类等液体燃料。然而这类过程复杂,成本投入较大,难以实现。间接转化的合成气的成分主要为h2和co,而其中氢能作为清洁、无污染、燃烧热值高的可再生能源,是新能源领域的研究热点,是优化我国能源结构、保障国家能源安全的战略选择,是实现我国“能源自主”的重要手段之一。目前,世界商用氢气的48%来自化石燃料的裂解,醇类裂解制取的氢气占比30%,焦炉气制取氢气占18%,另外的4%来自于电解水。其中,电解水是被广泛看好的制氢方式之一,可利用多种可再生能源产生的电能实现清洁、快速、集中地生产高纯氢气,从而实现将时间、空间上分布不均匀的可再生能源转换为稳定的化学能的目的,是实现可持续氢经济的一项重要能源技术。这项技术仍处于研发阶段,因此,提供一种新的制高纯氢的方法是亟需解决的问题。


技术实现要素:



4.本发明的目的在于克服现有技术存在的不足之处而提供一种高纯氢气的制备方法,以低浓度煤层气为燃料,能够实现低浓度煤层气的高附加值利用,降低资源浪费与环境污染,制备得到高纯度的氢气。
5.为实现上述目的,本发明采取的技术方案为:
6.一种高纯氢气的制备方法,包括以下步骤:
7.制备陶瓷膜反应器,所述的陶瓷膜反应器包括依次连接的催化反应层、阳极、陶瓷膜、阴极
8.配制低浓度煤层气,所述低浓度煤层气包括甲烷、氧气、氮气,其中,甲烷的体积浓度为5~30%,且甲烷与氧气的体积浓度比大于2;
9.将阳极和催化剂层还原,分别将低浓度煤层气、干燥氮气通入催化反应层、阴极,在650~750℃,通过外加电压的方式,生成高纯氢气。
10.本发明通过以低浓度煤层气为燃料,所述低浓度煤层气中的甲烷与氧气发生反应生产合成气,再通过外加电压将合成气解离为质子,并通过陶瓷膜向阴极传输,质子传输到
阴极后,在催化剂的作用下生成氢气,生成的氢气将原有的氮气排出,从而制备得到高纯度的氢气。
11.通过以低浓度煤层气为燃料,能够实现低浓度煤层气的高附加值利用,降低资源浪费与环境污染;还可以与氢能产业园进行联合利用,提高综合利用率。
12.通过控制煤层气中的甲烷的体积浓度为5~30%,能够提高透氢性能和稳定性,并进一步将甲烷与氧气的体积浓度比控制在2以上,能够有效防止阴极氧化同时促进甲烷的部分氧化重整反应,从而获得高纯度的氢气。
13.作为本发明的优选实施方案,所述低浓度煤层气包括以下体积浓度的组分:5~30%甲烷、1~8%氧气、余量氮气。
14.作为本发明的优选实施方案,所述外加电压为1.5~2v。
15.本发明的发明人在大量的研究中发现,所述的外加电源是影响制备得到的氢气纯度的关键,所述的外加电源能够有效的将合成气解离为质子,并对氢气进行分离,在没有施加电压时候,氢气纯度为0%,没有氢气产生,而随着电压达到1.5v~2v,氢气的纯度达到99%以上。
16.作为本发明的优选实施方案,所述陶瓷膜反应器的制备方法为:
17.(1)将第一浆料通过流延机流延出阴极支撑体素坯、陶瓷膜素坯,经过热压成型,烧结,得到阴极、陶瓷膜;
18.(2)通过将第二浆料涂覆在陶瓷膜上形成阳极素坯,再将第三浆料涂敷在阳极素坯上形成催化反应层素坯,在950~1050℃下烧结2~4h,得到陶瓷膜反应器;
19.所述第一浆料包括以下重量份的组分:16~20份nio、6~8份石墨、16~20份bazr
0.1
ce
0.7y0.1
yb
0.1o3-δ
、1~1.5份分散剂、20~25份粘结剂、2~3份塑化剂、25~35份溶剂;
20.所述第二浆料包括以下重量份的组分:16~20份bazr
0.1
ce
0.7y0.1
yb
0.1o3-δ
、32~40份粘结剂;
21.所述第三浆料包括以下重量份的组分:16~20份ni-ce
1-x
zr
xo2-δ
、32~40份粘结剂,x=0~0.75。
22.作为本发明的优选实施方案,所述阴极的厚度为400~600μm,所述陶瓷膜的厚度为15~25μm,所述阳极的厚度为25~35μm,所述催化反应层的厚度为40~60μm。
23.作为本发明的优选实施方案,所述阴极的厚度为500μm,所述陶瓷膜的厚度为20μm,所述阳极的厚度为30μm,所述催化反应层的厚度为50μm。
24.作为本发明的优选实施方案,所述步骤(1)中烧结温度为1350~1500℃,烧结时间为4~8h。
25.作为本发明的优选实施方案,所述步骤(1)热压成型的温度为70~80℃,压力为3~5mpa,热压时间为4~6min。
26.作为本发明的优选实施方案,所述第一浆料包括以下重量份的组分:18份nio、7.2份石墨、18份bazr
0.1
ce
0.7y0.1
yb
0.1o3-δ
、1.3份分散剂、23.52份粘结剂、2.52份塑化剂、31份溶剂;
27.所述第二浆料包括以下重量份的组分:20份bazr
0.1
ce
0.7y0.1
yb
0.1o3-δ
、40份粘结剂;
28.所述第三浆料包括以下重量份的组分:20份ni-ce
0.5
zr
0.5o2-δ
、40份粘结剂。
29.作为本发明的优选实施方案,所述bazr
0.1
ce
0.7y0.1
yb
0.1o3-δ
的制备方法为:
30.分别称取19.7336g baco3、1.2322g zro2、12.0480g ceo2、1.1290g y2o3、1.9704g yb2o3加入到球磨罐中,以乙醇为为球磨介质,并按照球磨珠于粉体总质量比为3:1的量加入球磨珠,在400r/min的转速下球磨24h后烘干并过筛,将过筛后的粉体压片后并在1200度下煅烧10h,得到bazr
0.1
ce
0.7y0.1
yb
0.1o3-δ

31.作为本发明的优选实施方案,所述ni-ce
0.5
zr
0.5o2-δ
的制备方法为:
32.将16.3065g硝酸铈、21.466g硝酸锆加入到200g去离子水中,搅拌均匀,加入31.521g柠檬酸、10ml硝酸,用氨水调节ph值为7.5,将溶液加热浓缩后发生自燃,燃烧后所得粉体在1000℃的空气气氛下煅烧4h,从而ni-ce
0.5
zr
0.5o2-δ

33.作为本发明的优选实施方案,所述分散剂为三乙醇胺。
34.作为本发明的优选实施方案,所述分散剂为聚乙烯醇缩丁醛、聚乙二醇、松油醇、乙基纤维素中的至少一种。
35.作为本发明的优选实施方案,所述塑化剂为邻苯二甲酸二丁酯。
36.作为本发明的优选实施方案,所述溶剂为乙醇、丁酮、丙酮、甲醇中的至少一种。
37.本发明的有益效果在于:(1)本发明通过以低浓度煤层气为燃料,所述低浓度煤层气中的甲烷与氧气发生反应生产合成气,再通过外加电压将合成气解离为质子,并通过陶瓷膜向阴极传输,质子传输到阴极后,在催化剂的作用下生成氢气,生成的氢气将原有的氮气排出,从而制备得到高纯度的氢气;通过以低浓度煤层气为燃料,能够实现低浓度煤层气的高附加值利用,降低资源浪费与环境污染;还可以与氢能产业园进行联合利用,提高综合利用率;(2)通过控制煤层气中的甲烷的体积浓度为5~30%,能够提高透氢性能和稳定性,并进一步将甲烷与氧气的体积浓度比控制在2以上,能够有效防止阴极氧化同时促进甲烷的部分氧化重整反应,从而获得高纯度的氢气;(3)本发明所述的外加电源能够有效的将合成气解离为质子,并对氢气进行分离,在没有施加电压时候,氢气纯度为0%,没有氢气产生,而随着电压达到1.5v~2v,氢气的纯度达到99%以上。
附图说明
38.图1为本发明所述的陶瓷膜反应器的结构示意图;
39.图2为本发明所述的氢气制备装置的结构示意图;
40.图3为催化反应后的气体成分分析图;
41.图4为不同外加电压下的低浓度煤层气燃料气中氢气含量变化图;
42.图5为不同外加电压下的回收的氢气纯度变化图;
43.图中标记:1、催化反应层;2、阳极;3、陶瓷膜;4、阴极;5、外加电源;6、第一底座1;7、第一陶瓷管1;8、陶瓷密封圈;9、第一陶瓷管;10、第二底座2;11、氮气进气口;12、产氢出气口;13、银丝;14、陶瓷膜反应器;15、低浓度煤层气出气口;16、低浓度煤层气进气口。
具体实施方式
44.为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
45.本发明的实施例中,所述的bazr
0.1
ce
0.7y0.1
yb
0.1o3-δ
的制备方法为:
46.分别称取19.7336g baco3、1.2322g zro2、12.0480g ceo2、1.1290g y2o3、1.9704g yb2o3加入到球磨罐中,以乙醇为为球磨介质,并按照球磨珠于粉体总质量比为3:1的量加入球磨珠,在400r/min的转速下球磨24h后烘干并过筛,将过筛后的粉体压片后并在1200度下煅烧10h,得到bazr
0.1
ce
0.7y0.1
yb
0.1o3-δ。
47.在本发明的实施例中,所述ni-ce
0.5
zr
0.5o2-δ
的制备方法为:
48.将16.3065g硝酸铈、21.466g硝酸锆加入到200g去离子水中,搅拌均匀,加入31.521g柠檬酸、10ml硝酸,用氨水调节ph值为7.5,将溶液加热浓缩后发生自燃,燃烧后所得粉体在1000℃的空气气氛下煅烧4h,从而ni-ce
0.5
zr
0.5o2-δ

49.实施例1
50.请参阅图1,本实施例提供了一种陶瓷膜反应器,所述的陶瓷膜反应器包括依次连接的催化反应层1、阳极2、陶瓷膜3、阴极4;所述阴极的厚度为500μm,所述陶瓷膜的厚度为20μm,所述阳极的厚度为30μm,所述催化反应层的厚度为50μm。
51.所述陶瓷膜反应器的制备方法为:
52.(1)将第一浆料通过流延机流延出阴极支撑体素坯、陶瓷膜素坯,经过热压成型,以1400℃烧结6h,得到阴极、陶瓷膜;热压成型的温度为75℃,压力为4mpa,热压时间为5min;
53.(2)通过将第二浆料涂覆在陶瓷膜上形成阳极素坯,再将第三浆料涂敷在阳极素坯上形成催化反应层素坯,在1000℃下烧结3h,得到陶瓷膜反应器;
54.所述第一浆料包括以下重量份的组分:18份nio、7.2份石墨、18份bazr
0.1
ce
0.7y0.1
yb
0.1o3-δ
、1.3份分散剂(三乙醇胺)、23.52份粘结剂(21份聚乙烯醇缩丁醛、2.52份聚乙二醇)、2.52份塑化剂(邻苯二甲酸二丁酯)、31份溶剂(12.4份乙醇、18.6份丁酮);
55.所述第二浆料包括以下重量份的组分:20份bazr
0.1
ce
0.7y0.1
yb
0.1o3-δ
、40份粘结剂(36份松油醇、4份乙基纤维素);
56.所述第三浆料包括以下重量份的组分:20份ni-ce
0.5
zr
0.5o2-δ
、40份粘结剂。
57.实施例2
58.请参阅图1、图2,本实施例提供了一种氢气制备装置,其包括装置主体,所述装置主体由第一陶瓷管7、第二陶瓷管9、第一底座6和第二底座8构成,第一底座6上开有低浓度煤层气出气口15、低浓度煤层气进气口16,所述第二底座上开有氮气进气口11、产氢出气口12,所述第一陶瓷管7、第二陶瓷管的一端均设有陶瓷密封圈8,所述陶瓷密封圈8固定有陶瓷膜反应器14,所述陶瓷膜反应器为实施例1所述的陶瓷膜反应器,所述陶瓷膜反应器上方设有连接外加电源5的银丝13。
59.实施例3
60.一种高纯氢气的制备方法,包括以下步骤:
61.(1)以实施例2所述的氢气制备装置为制取装置;
62.(2)配制低浓度煤层气,所述低浓度煤层气包括甲烷、氧气、氮气,其中,甲烷的体积浓度为5~30%,且甲烷与氧气的体积浓度比大于2;
63.(3)先利用氢气从低浓度煤层气出气口进入,将阳极和催化剂反应层催化剂还原,
分别将低浓度煤层气通过低浓度煤层气进气口进气,干燥氮气通过氮气进气口进气,在700℃、催化剂的作用下,低浓度煤层气中的甲烷发生部分氧化重整,生成合成气,再通过银丝添加外加电压(1.5~2.0v)将生成的合成气中的氢气透过陶瓷膜反应器并重新生成氢气,通过出气口来进行收集。
64.如图3所示,通过催化剂反应层对低浓度煤层气燃料进行催化反应后的气体成分主要包括:氢气、氧气、氮气、甲烷及一氧化碳(统称合成气)。
65.如图4所示,通过不同外加电压下的低浓度煤层气燃料气中氢气含量变化分析,可以发现在没有施加电压时候,氢气含量为10.348%,而施加不同电压后氢气含量由10.348%降低至6.308%,说明通过基于质子陶瓷膜反应器的电化学氢泵装置在施加电压后能有效地对氢气进行分离。
66.如图5所示,通过不同外加电压下的回收的氢气纯度变化分析,可以发现在没有施加电压时候,氢气纯度为0%,表明此刻没有氢气产生,而施加不同电压后氢气纯度瞬间提升至99%以上,说明通过基于质子陶瓷膜反应器的电化学氢泵装置在施加电压后能有效地对氢气进行分离并提纯。
67.本发明能将大量排空的低浓度煤层气经过催化转化及分离提纯可获得氢气,实现对低浓度煤层气的高附加值利用,合成出的氢气具有纯度高,容易回收的优点。
68.最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

技术特征:


1.一种高纯氢气的制备方法,其特征在于,包括以下步骤:制备陶瓷膜反应器,所述的陶瓷膜反应器包括依次连接的催化反应层、阳极、陶瓷膜、阴极;配制低浓度煤层气,所述低浓度煤层气包括甲烷、氧气、氮气,其中,甲烷的体积浓度为5~30%,且甲烷与氧气的体积浓度比大于2;将阳极和催化剂层还原,分别将低浓度煤层气、干燥氮气通入催化反应层、阴极,在650~750℃,通过外加电压的方式,生成高纯氢气。2.根据权利要求1所述的高纯氢气的制备方法,其特征在于,所述低浓度煤层气包括以下体积浓度的组分:5~30%甲烷、1~8%氧气、余量氮气。3.根据权利要求1所述的高纯氢气的制备方法,其特征在于,所述外加电压为1.5~2v。4.根据权利要求1所述的高纯氢气的制备方法,其特征在于,所述陶瓷膜反应器的制备方法为:(1)将第一浆料通过流延机流延出阴极支撑体素坯、陶瓷膜素坯,经过热压成型,烧结,得到阴极、陶瓷膜;(2)通过将第二浆料涂覆在陶瓷膜上形成阳极素坯,再将第三浆料涂敷在阳极素坯上形成催化反应层素坯,在950~1050℃下烧结2~4h,得到陶瓷膜反应器;所述第一浆料包括以下重量份的组分:16~20份nio、6~8份石墨、16~20份bazr
0.1
ce
0.7
y
0.1
yb
0.1
o
3-δ
、1~1.5份分散剂、20~25份粘结剂、2~3份塑化剂、25~35份溶剂;所述第二浆料包括以下重量份的组分:16~20份bazr
0.1
ce
0.7
y
0.1
yb
0.1
o
3-δ
、32~40份粘结剂;所述第三浆料包括以下重量份的组分:16~20份ni-ce
1-x
zr
x
o
2-δ
、32~40份粘结剂,x=0~0.75。5.根据权利要求4所述的高纯氢气的制备方法,其特征在于,所述阴极的厚度为400~600μm,所述陶瓷膜的厚度为15~25μm,所述阳极的厚度为25~35μm,所述催化反应层的厚度为40~60μm。6.根据权利要求5所述的高纯氢气的制备方法,其特征在于,所述阴极的厚度为500μm,所述陶瓷膜的厚度为20μm,所述阳极的厚度为30μm,所述催化反应层的厚度为50μm。7.根据权利要求4所述的高纯氢气的制备方法,其特征在于,所述步骤(1)中烧结温度为1350~1500℃,烧结时间为4~8h。8.根据权利要求4所述的高纯氢气的制备方法,其特征在于,所述步骤(1)热压成型的温度为70~80℃,压力为3~5mpa,热压时间为4~6min。9.根据权利要求4所述的高纯氢气的制备方法,其特征在于,所述第一浆料包括以下重量份的组分:18份nio、7.2份石墨、18份bazr
0.1
ce
0.7
y
0.1
yb
0.1
o
3-δ
、1.3份分散剂、23.52份粘结剂、2.52份塑化剂、31份溶剂;所述第二浆料包括以下重量份的组分:20份bazr
0.1
ce
0.7
y
0.1
yb
0.1
o
3-δ
、40份粘结剂;所述第三浆料包括以下重量份的组分:20份ni-ce
0.5
zr
0.5
o
2-δ
、40份粘结剂。10.根据权利要求9所述的高纯氢气的制备方法,其特征在于,如下(a)~中的至少一种:(a)所述分散剂为三乙醇胺;
(b)所述粘结剂为聚乙烯醇缩丁醛、聚乙二醇、松油醇、乙基纤维素中的至少一种;(c)所述塑化剂为邻苯二甲酸二丁酯;(d)所述溶剂为乙醇、丁酮、丙酮、甲醇中的至少一种。

技术总结


本发明公开了一种高纯氢气的制备方法,属于氢气制备技术领域,包括以下步骤:制备陶瓷膜反应器,所述的陶瓷膜反应器包括依次连接的催化反应层、阳极、陶瓷膜、阴极;配制低浓度煤层气,所述低浓度煤层气包括甲烷、氧气、氮气,其中,甲烷的体积浓度为5~30%,且甲烷与氧气的体积浓度比大于2;将阳极和催化剂层还原,分别将低浓度煤层气、干燥氮气通入催化反应层、阴极,在650~750℃,通过外加电压的方式,生成高纯氢气。通过以低浓度煤层气为燃料,再通过外加电压将合成气解离为质子,并通过陶瓷膜向阴极传输,质子传输到阴极后,在催化剂的作用下生成氢气,生成的氢气将原有的氮气排出,从而制备得到高纯度的氢气。而制备得到高纯度的氢气。而制备得到高纯度的氢气。


技术研发人员:

李明飞 侯龙通 李淑君 陈正鹏 董江波 饶睦敏 陈创庭 凌意瀚

受保护的技术使用者:

广东能源集团科学技术研究院有限公司

技术研发日:

2022.07.04

技术公布日:

2022/11/1

本文发布于:2024-09-25 02:24:34,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/3/11226.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:氢气   所述   甲烷   阴极
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议