G蛋白偶联受体及其信号转导与疼痛

高压G蛋白偶联受体及其信号转导与疼痛
综述:  孙磊  审校:曾帮雄
G蛋白是细胞信息传递的基本中间物质。许多研究表明[1]梨花护肤品在很多细胞,突触后细胞缓慢的电位改变或根本观察不到电位改变,这与刺激突触前细胞形成了鲜明对比。突触后细胞则是通过第二信使和酶的活化来调节其胞内的生化过程。突触后细胞上的慢反应受体称为代谢型受体。G蛋白相关受体家族属此型受体且最大。本文综述G蛋白偶联受体及其信号转导在临床疼痛中的意义。
 
一、G蛋白的分子生理学—G蛋白循环[2-7]
G蛋白循环可描述为一系列相对独立的步骤。“G蛋白”系因能通过三磷酸鸟苷[GTP]的结合与水解以限制其作用时间而得名。第一步:排列于细胞表面的特殊受体识别配体,一旦结合此配体发生形态改变,使受体激活特定等级的G蛋白。G蛋白激活的关键是受体一配体刺激引
起的GTP转化为5-二磷酸鸟苷[GDP]的过程(第二步)。此转变受GDP水解速率控制。一旦激活后G蛋白可自由弥散入细胞膜与效应蛋白相遇(第三步)。通常这些效应蛋白是细胞内的酶或细胞膜上的离子通道。这一步调节效应蛋白,产生酶的激话与抑制离子通道的开放与关闭等。并改变细胞内第二信使浓度和细胞膜电位。G蛋白保持着激活状态,直到将GTP末端磷酸盐水解为GDP,G蛋白失活后和GDP与另一受体配体结合进入下次循环。
通常G蛋白有三大特征:1放大作用:激活靶细胞上的一个受体可激活500个G蛋白,使得由一个G蛋白调节效应蛋白在其失活前可产生大量的第二信使。2 G蛋白的由于减慢GTP水解的速率而产生“作用时间延长”。3自我调控,G蛋白被激活后必须自我关闭,否则将持续地产生放大作用。
二、G蛋白偶联受体激活蛋白级联反应
突触后细胞上的受体多属于G蛋白偶联受体家族[5],这些受体的活动需要一系列被称为G蛋白的分子有序地参与,G蛋白通过和其他细胞内成分相互作用引起第二信使水平的变化或离子通道的激活等反应。(同上G蛋白循环)
工艺相框 
三、G蛋白偶联受体具有共同结构特点
G蛋白偶联受体间高度的同源性反映在它有共同的预测结构,它们均有7个跨膜段,所以又称为7次跨膜受体,它们都有一个大小变化很大的细胞外N末端和一个胞浆内C末端,按其结合区域有G蛋白偶联受体配体结合域;G蛋白偶联受体与G蛋白作用的胞内结构域等。
 
四、G蛋白的种类与功能[1-8]
G蛋白由α、β、γ三种独特多肽亚单参位组成三聚体,每个亚单位都由多基因编码,从而构成多种多样的可能组合方式。
1、α亚单位,α亚单位是最大的亚单位,至少由17 种不同的基因编码,这些基因不同的拼接使其种类多样化。α亚单位有Cs、Gi、Gq、G12四大家族,Gs家族可激活腺苷酸环化酶,Gi家族抑制腺苷酸环化酶,Gq家族则对磷脂酶C有作用。
2、βγ单位,通常情况下,β亚单位和γ亚单位作一个非共价紧密结合的复合体被纯化,至水压力传感器
今已克隆了五种不同的β亚单位和七种不同的γ亚单位,已有证据提示不同的复合体的功能有一定的差别。βγ的一个主要作用就是提高和膜结合的α亚单位浓度,从而促进α亚单位和受体偶联。越来越多的研究显示βγ本身能直接和效应器结合,从而介导信号转导。
3、G蛋白α亚基的效应分子,α亚基自βγ亚基解离后,沿膜脂双层的内表表面扩散,作用于效应器。G蛋白效应分子主要有:腺苷酸环化酶;磷酸二酯酶;磷脂酶c,磷脂酶A2钢舌鼓
4、G蛋白的βγ亚基的功能。G蛋白βγ亚基有两个主要作用。其一是将α亚基锚在细胞膜上,其二是调节α亚基活性。βγ亚基能够稳定GDP和α亚基的结合,同时抑制GTP的结合,因而阻止了G a激活,这确保在没有制激时α亚基只有低水平的基本活性,目前认为βγ介导的抑制常见于抑制腺苷酸环化酶活性。
现有研究表明[8-13]:βγ亚基能够直接激活一些PLC-β异构体,但PLC-β4不能被βγ亚基激活。对腺苷酸环化酶而言,αs亚基均可激活所有亚型αi则抑制ACI,ACV和ACVI的活性,βγ亚基的作用则有选择性,βγ能够抑制AC,激活AC。刺激Gs、Go通路可大大加强Ac的活性,cAMP水平升高能反映两条不同通路被同时激活。
 
五、G蛋白参与调节离子通道的功能[9-23]
1、G蛋白通过第二信使调节离子通道,许多离子通道的活性受特异的G蛋白的偶联受体激活的影响,在许多情况下通过第二信使起作用,一些离子通道的磷酸化和G蛋白介导的腺苷酸环化酶激活有关。例如Gq激活PLC产生IP3随后释放Ca2+从而影响钙依赖性钾离子通道的活性。在嗅上皮细胞纤毛的离子通道的门控也受cAMP水平的影响。
2、G蛋白的α亚基直接调节离子通道,大量事实表明,有些离子通道的调节不是通过第二信使途径,而是α亚基和离子通道在细胞膜上直接相互作用的结果。研究表明Ga本身可以直接调节L型钙通道和钾通道的活性,特定的βγ亚基也参与了信号转导过程,但单独敲除α亚基可干扰受体介导的抑制作用,这说明了α亚基对钙电流有抑制作用。
3、G蛋白βγ能够直接调节离子通道 GIRK分子被克隆后,陆续有报道G蛋白βγ亚基可以直接与GIRK分子或其片段结合,最近,通过结合运用分子生物学和电生理技术发现GIRK分子中存在多个功能不同的G蛋白βγ亚基调节位点,GIRK4 339位处和GIRK1333位处是G蛋
白βγ亚基重要调节位点之一。M2受体激活后释放的G蛋白βγ亚基通过作用这一位点介导Ach引起的钾电流作用。
研究表明,一些神经递质激活其G蛋白的偶联受体,还能够抑制电压依赖N和P/Q型钙通道的开放。在交感神经元或细胞株中表达G蛋白βγ亚基 而不是GO或Gi可以模拟神经递质βγ亚基的细胞,钙通道不再进一步抑制。有实验证据提示G蛋白β热泵热水γ亚基能够抑制电压依赖N和P/      Q型钙通道的开放。分子生物学实验表明:钙通道αB的~连接区存在G蛋白βγ亚基的调节点,β或γ可以和钙αB的~连接区融合蛋白结合。定点突变这一区域可以阻断Gβ和钙通道αβ的~连接区结合,可以阻断GTPrS引起的钙电流抑制,αB的~连接区合成肽能够减弱G蛋白βγ对钙电流的抑制。
 
六、cGMP水平的调节
尽管cAMP和cGMP结构很相似。但鸟氨酸环化酶(GC)和腺苷酸环化酶(AC)的结构及调节有很大不同,鸟氨酸环化酶有种形式:一种像AC般结合在膜上,另一种在腺浆内,结
合在膜上的GC为跨膜蛋白,细胞外N末端和多肽结合,一个TM段及含催化区的细胞内C末端,它催化GTP生成为cGMP。内皮细胞上的G蛋白偶联受体激活后,引起PLC的激活,最终引起细胞内钙离子释放,从而激活了钙/钙调素依赖性的一氧化氮合酶(NOS),NOS可催化精氨酸生成一氧化氮(NO),通过细胞膜弥散,内皮细胞产生的NO弥散到邻近的平滑肌细胞作用于可溶性的GC,从而激活环化酶,cGMP水平升高激活依赖cGMP的蛋白激酶,随后肌蛋白磷酸化使血管松施。钙也参与调节GC活性,G蛋白激活的cGMP磷酸二脂酶可降低cGMP水平,cGMP减少将使cGMP激活的离子通道暗电流减少,这些通道是钠离子通透性的但对钙离子也有通透性。
 
七、机体产生的疼痛。
研究发现组织损伤后,中枢神经系统对正常的无害性刺激的反应增强,不仅是损伤区的机械和热刺激反应过强,而且未损伤区的机械刺激发生过强反应,这提示在疼痛产生时,中枢神经系统并不是固定不变的,而是可塑的[8]
疼痛是机体健康受到威胁的信号,疼痛过程中,机体内部许多生化物质参与活动,其活动机制十分复杂[32]。可能为神经介质的生化物。
1、乙酰胆碱(Ach)
2、氨基酸类:γ-氨基丁酸、甘氨酸、谷氨酸、门冬氨酸。
3、单胺类 5-HT  组织胺 DA、AE、NE等。
4、肽类:内啡肽、脑啡肽、P物质、前列腺素等。
直接致痛的内源性能化物质:
1)无机盐类:钾离子、氢离子、钙离子。
2)胺类:5-HT、NE、组织胺、Ach。
3)肽类:缓激肽、十肽、P物质、前列腺素和加压素。
4、腺苷类:ATP、ADP、AMP。
 
八、G蛋白偶联受体与疼痛
研究证实机体的疼痛的发生发展过程与细胞内第二信使存在着密切联系,痛觉递质与G蛋白偶联受体结合有关[5]。目前发现与G蛋白偶联的受体有70余种[2],常见如Tab 1[1]

本文发布于:2024-09-22 04:15:10,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/99867.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:蛋白   受体   细胞
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议