双电源切换应用电路

功率P-FET控制器LTC4414
LTC4414是一种功率P-EFT控制器,主要用于控制电源的通、断及自动切换,也可用作高端功率开关。
该器件主要特点:工作电压范围宽,为3.5 36V ;电路简单,外围元器件少;静态电流小,典型值为 30 P A;能驱动大电流P沟道功率MOSFET ;有电池反极性保护及外接
P-MOSFET的栅极箝位保护;可采用微制器进行控制或采用手动控制;节省空间的8
引脚MSOP 封装;工作温-40 C +125 C。
图1 LTC4414的引脚排列引脚排列及功能
表1 LTC441各引脚功能
LTC4414的引脚排列如图1所示,各引脚功能如表1所示。
图2 LTC4414结构及外围器件框图
基本工作原理
这里通过内部结构框图及外接元器件组成的电源自动切换电路来说明其工作原理。内部
结构框图及外围元器件组成的电路如图2所示。其内部结构是由放大器A1、电压/电流转换
电路、电源选择器(可由VIN端或SENSE 端给内部电路供电)、模拟控制器、比较器C1、
基准电压源(0.5V)、线性栅极驱动器和栅极电压箝位保护电路、开漏输出FET及在CTL
内部有3.5P A的下拉电流源等组成。外围元器件有 P沟道功率MOSFET 、肖特基二极管D1、上拉电阻RPU、输入电容CIN及输出电容COUT。
图2中有两个可向负载供电的电源(主电源及辅电源),可以由主电源单独供电,也可
以接上辅电源,根据主、辅电源的电压由LTC4414控制实现自动切换。这两种供电情况分
别如下。
1主电源单独供电
主电源单独供电时,电流从LTC4414的VIN端输入到电源选择器,给内部供电。放大器A1将
VIN和VSENSE 的差值电压放大,并经过电压/电流转换,输出与VIN — VSESNSE之值成比例的电
流输入到模拟控制器。当VIN — VSESNE>20mV 时,模拟控制器通过线性
栅极驱动器及箝位保护电路将GATE端的电压降到地电平或到栅极箝位电压(保证-VGS <
8.5V),使外接P-MOSFET 导通。与此同时,VSESNE 被调节到VSESNE=VIN — 20mV ,即外接P-MOSFET 的 VDS=20mV 。P-MOSFET 的损耗为 ILOAD X 20mV。在 P-MOSFET 导通时,模拟控
制器给内部FET的栅极送低电平,FET截止,STAT端呈高电平(表示P-MOSFET 导通)。
2加上辅电源
当加上辅电源(如交流适配器)后,如果VSESNE> VIN+20mV ,则内部电源选择器由
SENSE 端向内部电路供电。模拟控制器使GATE端电压升高到VSENSE ,则P-MOSFET 截
止,辅电源通过肖特基二极管D1向负载供电。这种电源切换是自动完成的。
在辅电源向负载供电时,模拟控制器给内部FET的栅极送高电平,FET导通,STAT端呈低电平(表
示辅电源供电)。上拉电阻RPU 的阻值要足够大,使流过FET 的电流小于5mA 。
在上述两种供电方式时,CTL 端是接地或悬空的。CTL 的控制功能将在下面的应用电
路介绍。
典型应用电路
1主、辅电源自动切换电路
图3是一种减少功耗的主、辅电源自动切换电路,其功能与图2电路相同,不同之处是用一只辅P-
MOSFET (Q2)替代了图2中的D1,可减少电压降及损耗。其工作原理与图2
V IN Z  T  VOUT
土」古尸
完全相同。 LTC4414 3 V IN  SENSE GN GATE CTL STAT
图4由微控制器控制的电源切换电路
2由微控制器控制的电源切换电路
由微控制器(P C )控制的电源切换电路如图4所示。此图中的主、辅P-MOSFET 都采 用了两个背对背
的P-MOSFET 组成,其目的是主电源或辅电源中的P-MOSFET 截止时,均 不会通过
P-MOSFET 内部的二极管向负载供电。其缺点是电源要通过两个P-MOSFET 才能向负载供电,损耗
增加一倍,并增加成本。 图4虚线框中的稳压二极管(一般取8 10V )连接在辅P-MOSFET 的极限-VGSS 时,由于稳压
二极管的击穿电压<-VGS ,稳压二极管被击穿使P-MOSFET 的-VGS 箝位于8 10V ,从而进行保护。
主、辅电源的电压若等于或小于P C 的工作电压时,主、辅电源可直接连接P C 的ADC 接;若主、辅电源的电压大于P C 的工作电压时,则电源电压要经过电阻分压器分压后才能输入PC 的
ADC (图4中,主辅电源直接与PC 接)。 图3主、畏电源自动切换电路
PC的I/O 与LTC4414的CTL端连接。当在CTL端施加逻辑低电平时(低于0.35V)时,主电源向负载供
电(不管辅电源的电压高低);当PC向CTL端施加高电平(高于0.9V)时,则由辅电源向负载供电(也
不管其电压比主电源高还是低)。一旦辅电源供电,主电源
可移去。只有当主电源高于辅电源并且在CTL端置低电平时才能使主电源恢复供电。为了
在切换的瞬间使输出电压变化较小,输出电容COUT要有足够的电容量。
这电路切换的过程是: CTL=H时,GATE端的电压与SENSE 端的电压相等,使主P-MOSFET 的-VGS=0而截止;与此同时STAT端为低电平,使辅P-MOSFET 的-VGS正Vout而导通。
在实际使用时,主电源往往由电池供电,主电源低阈值电压(切换电压)先设定好并存
入 C中,P C检测主要电源的电压,一旦主电源的电压低于设定的低阈值电压,P C向
CTL端输出高电平,则主P-MOSFET 截止;STAT端输出低电平,辅P-MOSFET导通,电源切换成
辅电源供电。此时可移去主电源的电池,更换充好电的电池再装入。P C可检查主
电源的电压,若VIN>VSENEN超过20mV , P C会自动切换到主电源供电。P C还可以通
过I/O驱动不同颜的LED,显示主、辅电源的供电状态。
V OUT
LTC4414
V IN SENSE
GND GATE
CTL STAT
图5高端功率开关
3高端功率开关
图5是由LTC4414组成的高端功率开关电路。由CTL端施加逻辑电平来控制
P-MOSFET的通、断。该电路可由C控制、电路控制或手动控制。 CTL=L时,开关导通;
CTL=H时,开关关断。
外围元器件的选择
P-MOSFET 、输入、输电容款4Q聃和的主要外围元器件是
1P-MOSFET 的选择
为满足电路工作的可靠性,要选VDSS>VIN (max )及RDS (on )小的P-MOSFET 。在VIN 低、ILOAD 大时,要保证 ID>ILOAD (max )及 RDS (on )x I LOAD (max ) < 20mV。
2C IN及C OUT的选择
为保证在电源切换及负载有较大变化时输出电压稳定,选择合适的CIN及COUT很重
要。
C IN 一般在0.1 101F范围内选择,C OUT在1 47 A F范围内选取。C IN及C OUT可选用多层陶瓷
电容器(MLCC ),其电容量大小是否合适最好通过实验来调整。
在使用MLCC电容器时,因其ESR低,自身谐振频率及Q值高,有可能在AC适配器供电插拔瞬单间生高压脉冲而损坏LTC4414。因此,凌特公司建议在输入电容中串联几个Q的电阻以降值Q值以防止瞬态高压的产生。在实验过程中可看V IN及

本文发布于:2024-09-21 14:30:09,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/95180.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:电源   电压   供电   电路   切换
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议