制备稳定的油质组合物的改进方法

著录项
  • CN88103104
  • 19880526
  • CN88103104
  • 19881207
  • 埃克森化学专利公司
  • 迈尔考姆·韦道斯;巴里·约翰·豪莱特
  • C10M161/00
  • C10M161/00 C10M161/00 149/14 137/04 139/00 C10N30/00

  • 美国新泽西
  • 美国,US
  • 19870526 US07054288
  • 中国国际贸易促进委员会专利代理部
  • 隗永良
摘要
本发明提供改善了稳定性的油质组合物。高分子量的无灰分散剂和金属清净剂在至少100℃下预混1至10小时,冷却至低于至少85℃并与附加添加剂混合,包括油溶性铜抗氧化剂和二烷基二硫代磷酸锌抗磨剂。
权利要求

1、一种制备具有改进的抗混浊性的分散-清净剂组合物的方法,该组合物可用作油质组合物添加剂,该方法包括:

(a)使含有润滑油、无灰分散剂和金属清净剂的混合物在至少约100℃的温度下,在基本上没有空气存在下处理约1~10小时以形成热处理过的分散-清净剂混合物:

(b)将上述热处理过的混合物冷却至大约不高于85℃,形成冷却的分散-清净剂浓缩物;

(c)将上述冷却的分散-清净剂浓缩物与至少一种选自铜抗氧化剂、二烷基二硫代磷酸锌抗磨剂的添加剂混合,形成具有改善了的抗混浊性的调合添加剂;

所述无灰分散剂包括含氮或酯的分散剂,选自(i)长链烃取代的一元羧酸和二羧酸或其酐的油溶性盐、酰胺、酰亚胺、噁唑啉和酯或其混合物,(ii)有多胺直接与之相连的长链脂族烃和(iii)由约1摩尔长链烃取代的苯酚与约1~2.5摩尔甲醛和约0.5~2摩尔多亚烷基多胺缩合而成的曼尼期(Mannich)缩合物;

其中(i)、(ii)和(iii)中所述的长链烃基为C 2-C 10单烯烃的聚合物,所述聚合物的数均分子量至少约为1300。

2、根据权利要求1的方法,其中所述分散剂含有下述反应混合物的油溶性反应产物:

(a)通过使数均分子量( Mn)至少大约为1300的C 2-C 10单烯烃聚合物和C 4-C 10一元不饱合酸物质反应形成的可产生烃基取代的C 4-C 10不饱合二羧酸的物质,其中所述可产生酸的物质相对于形成可产生酸的物质的反应混合物中存在的每分子烯烃聚合物平均具有至少大约0.8可产生二羧酸的部分;和

(b)选自于胺、醇、氨基醇及其混合物的亲核反应剂。

3、根据权利要求2的方法,其中所述的亲核反应剂含有胺。

7、根据权利要求3~6的任一方法,其中在所述的可产生酸的物质中,相对于每分子所述的烯烃聚合物有大约0.8~2.0可产生二羧酸的部分。

8、根据权利要求7的方法,其中所述的烯烃聚合物含有分子量为大约1300~5000的C 2-C 4单烯烃聚合物和C 4-C 10一元不饱合酸物质。

4、根据权利要求2的方法,其中所述的亲核反应剂含有多亚乙基多胺。

13、根据权利要求4的方法,其中所述二烷基二硫代磷酸锌抗磨剂中的每个烷基分别为2~10个碳原子的烷基。

14、根据权利要求13的方法,其中金属清净剂含有至少一种选自高碱性碱和碱土金属磺酸盐以及高碱性和碱土金属酚盐的金属盐。

15、根据权利要求4、13和14的任一方法,其中混合的添加剂含有所述的二烷基二硫代磷酸锌抗磨剂和所述的抗氧化剂,其中抗氧化剂含有油溶性铜化合物,选自二烃基硫代磷酸铜和二烃基二硫代磷酸铜,C 10-C 18脂肪酸的铜盐,分子量为200~500的环烷酸的铜盐,通式为(RR′NCSS)nCu的二硫代甲氨酸铜,其中n为1或2,R和R′是含有1~18个碳原子的烃基,和可产生烃基取代的C 4-C 10不饱和二羧酸的反应产物的铜盐,该反应产物是通过使数均分子量为900~1400的C 2-C 10单烯烃聚合物以C 4-C 10不饱和羧酸物质取代的反应形成的。

5、根据权利要求2的方法,其中所述的亲核反应剂含有醇。

6、根据权利要求2的方法,其中所述的亲核反应剂含有氨基醇。

9、根据权利要求1的方法,其中所述的抗氧化剂至少含有一种油溶性铜抗氧化剂化合物,所述铜抗氧化剂在所述调合添加剂中的用量以油溶性铜化合物形式加入的铜大约5~500ppm。

10、根据权利要求9的方法,其中在所述调合添加剂中加入的铜为10~200ppm。

11、根据权利要求9的方法,其中所述的铜抗氧化剂化合物选自二烃基硫代磷酸铜和二烃基二硫代磷酸铜、C 10-C 18脂肪酸的铜盐、分子量为200~500的环烷酸的铜盐,通式为(RR′NCSS)nCu的二硫代甲氨酸铜,其中n为1或2,R和R′是含有1~18个碳原子的烃基,和可产生烃基取代的C 4-C 10不饱和二羧酸的反应产物的铜盐,该反应产物是通过使数均分子量为700~1200的C 2-C 10单烯烃聚合物以C 4-C 10不饱和羧酸物质取代的反应形成的。

12、根据权利要求11的方法,其中所述的铜抗氧化剂含有可产生烃基取代的C 4-C 10不饱合二羧酸的反应产物的铜盐,该反应产物是通过数均分子量为900~1400的C 2-C 10单烯聚合物用琥珀酸、酐或酯基取代的反 应形成的,其中每摩尔所述的聚合物有大约为0.8~1.6摩尔的琥珀酸部分。

说明书

本发明涉及含有适用于燃料油和润滑油组合物的油溶性分散添加剂的油质组合物(包括含有该添加剂的缩物)的制备方法。

加拿大专利第895,398号公开了使1摩尔分子量为700~10,000的不饱和烃与1~1.5摩尔氯代马来酸或氯代富马酸反应的方法,反应产物还可进一步与醇反应。

美国专利第3,927,041号公开了使1摩尔分子量为300~3000的、含有5~200ppm1,3二溴-5,5-二烷基乙内酰脲作为催化剂的聚丁烯与0.8~5(一般为1.05~1.15)摩尔二羧酸或二羧酸酐反应以生成可用于石油产品的物质的方法,应用时可使用该物质本身,或使用其酯、酰胺、酰亚胺和脒。

美国专利第3,215,707号公开了使氯与一种由分子量高达50,000的(特别是分子量为250~3,000的)聚烯烃和1个或1个以上摩尔(取决于每个聚合物分子中具有1个还是1个以上的琥珀酐基)的马来酐组成的混合物起反应的方法。

美国专利第4,062,786号在实施例13中公开了一种分子量约为1300、皂化值约为100的聚异丁烯基琥珀酐。

美国专利第4,113,639号和第4,116,876号公开了一个烯基分子量为1300和皂化值为103的烯基琥珀酐(每个烃分子约有1.3个琥珀酐单元)的实施例。可使这种烯基琥珀酐先后与多胺和硼酸反应(美国专利第4,113,639号),或可使其先与氨基醇反应以生成噁唑啉(美国专利第4,116,876号),然后使噁唑啉与硼酸反应以使其含硼。

美国专利第4,123,373号在实施例3中公开了一种分子量约为1400、 皂化值为80的聚异丁烯基琥珀酐。

美国专利第4,234,435号公开了一类油添加剂,它们是由数均分子量( Mn)为1,300~5,000和每个聚链烯烃至少含1.3个二羧酸基的聚链烯烃衍生的聚链烯烃取代的二羧酸。

这里还引用下列专利的全部公开内容作为参考:美国专利第3,087,936、3,131,150、3,154,560、3,172,892、3,198,736、3,219,666、3,231,587、3,235,484、3,269,946、3,272,743、3,272,746、3,278,550、3,284,409、3,284,410、3,288,714、3,403,102、3,562,159、3,576,743、3,632,510、3,836,470、3,836,471、3,838,050、3,838,052、3,879,308、3,912,764、3,927,041号;再颁专利26,330、4,110,349、4,113,639、4,151,173、4,195,976号及英国专利第1,368,277和1,398,008号。

美国专利第4,412,927号论及一种制备润滑油用过碱化金属分散-清净剂的方法。该专利权所有人的材料的配伍性与工业产品相似,表现在组合物中含有2%的具有聚异丁烯琥珀酰亚胺的碱的分散剂、1.6毫摩尔二硫代磷酸锌和2.3%含有一定量的钙或镁的分散-清净剂,在80℃下保持25天以上。没有公开这些组分混合的温度。

研究公开第25804号(1985年10月)公开了一种制备拔顶浑浊油添加剂浓缩物的方法,该方法是将一种镁或钙的高碱性烷基苯磺酸盐的油溶液与一种镁或钙的高碱性硫化烷基酚盐的油溶液混合并至少加热到80℃(但要低于沸点或分解温度),保持0.25~10小时,然后使该经过热处理的混合物与添加剂浓缩物的其它组分在不超过60℃的温度下混合。

美国专利第3,649,661号论及制备具有改进的清净和中和特性工业液体的金属配合物的方法,该方法是使亚烷基多胺、烯基琥珀酸(或酸酐)和一种ⅠB、ⅡB、ⅣA、ⅥB或Ⅷ族金属的有机磺酸盐起反应。所公开的合适的反应温度为60℃~250℃,金属盐与氮化合物的合适的摩尔 比为0.5~2。该专利指出,与金属盐反应的氮化合物可包含多胺的烯基琥珀衍生物,其中烯基含8~300个碳原子,起反应的多胺与烯基琥珀酸酐的摩尔比应使反应产物含1个或1个以上碱性氮原子。

美国专利第3,346,493号论及含添加剂的润滑油组合物,该添加剂包含一种金属配合物(Zn,Sn)。该金属配合物系烯基胺与C50和C50以上烃基琥珀酸或酸酐在25℃至分解温度之间的温度下的反应产物。

美国专利第4,502,971号论及一种改进无灰分散剂(例如由聚异丁烯琥珀酐与多胺反应生成的分散剂)与碱性油溶性镁化合物的配伍性的方法,该方法是使分散剂在其与镁化合物混合以获得最终的调合添加剂(additive    package)之前预先与一种含有碱金属的碱式盐反应。

美国专利第3,755,172号论及可用作润滑油添加剂的高碱性含氮无灰分散剂的制备方法,该方法是将一种金属醇盐-碳酸盐配合物加入到一种分散剂的醇或醇-芳族烃溶液中,该溶液是不含金属的、油溶性的中性或碱性分散剂的溶液。该分散剂可包含由高分子量的烯基羧酸或酸酐与至少有一个氨基或羧基的含氮有机化合物进行反应而衍生的酰胺、酰亚胺或酯。在添加金属醇盐-碳酸盐配合物的同时或添加金属醇盐-碳酸盐配合物之后,使配合物水解以生成金属碳酸盐细粒的分散体。据该专利公开,金属醇盐-碳酸盐配合物与分散剂溶液在25~100℃下,最好在30~65℃下接触。

美国专利第3,714,042号论及在大约25℃直至不超过分解温度的温度下,用每一羧基至少含15个脂族碳原子的高分子量羧酸,或用这类酸的酸酐、酯、酰胺、酰亚胺或盐衍生物处理高碱性金属磺酸盐清净剂配合物。该专利权所有人指出,这种酰化氮和酯衍生物须在100~250℃下使用,且要按照严格的比例,即用量相当于配合物的碱度至少为1%,但不大于25%,以改善其泡沫性能和溶解度。

但上面所述都没有建议或公开本发明的热处理方法。

本发明的目的是提供一种制造含有高分子量无灰分散剂和金属清净剂的、具有改进稳定性的油质组合物。本发明的方法是使一种高分子量分散剂与油溶性金属清净剂在润滑油基础油料中,在基本上没有空气存在下,在约100~160℃下接触约1~10小时。然后将所得经过热处理的、含有高分子量分散剂和金属清净剂的液体润滑油基础油料冷却到大约不超过85℃的温度,并与铜抗氧化添加剂、二烃基二硫代磷酸锌抗磨添加剂和其它可用于润滑油组合物的添加剂混合。

在一较为可取的方案中,高分子量分散剂包含被产生二羧酸的部分(最好是酸或酸酐部分)所取代的、数均分子量为1300~5000的聚烯烃。该酸或酸酐物质本身可用作分散添加剂,或进一步与胺、醇(包括多羟基化合物、氨基醇等)反应以生成其它有用的分散添加剂。金属清净剂可包含例如高碱性(或碱性)金属磺酸盐或酚盐。

业已发现,以高分子量分散剂和金属清净剂(例如高碱性磺酸盐)的组合物为基础的调合添加剂(adpack)的稳定性比含常规(低分子量)分散剂的体系差,特别是当这类调合添加剂还含有铜抗氧化剂或同时含有铜抗氧化剂和二烃基二硫代磷酸锌抗磨剂时更是如此。这种较差的稳定性表现在添加剂成品在储存过程中的相分离。

通常制造调合添加剂的方法是首先使分散剂(通常是在调合添加剂占最大百分比的组分)与清净剂在最高不超过85℃的温度下接触。我们发现,在该接触过程中在一定的条件下提高温度能显著地改善最终调合添加剂的极限稳定性(即不会分成不同的相)。稳定性改善后就不需要添加辅助的稳定剂。

利用本发明的添加剂可制备润滑油组合物,例如适用于汽油和柴油发动机的自动传动液、和重负荷机油等。还可制备通用型曲轴箱润滑油,同是这种润滑油组合物,既可用于汽油发动机,又可用于柴油机发动机。这些润滑油组合物通常含有几种不同类型的添加剂,以使该组合物具有所需 要的特性。这些不同类型的添加剂包括粘度指数改进剂,抗氧化剂,缓蚀剂,清净剂,分散剂,倾点下降剂,抗磨剂等。

制备润滑油组合物时,通常的做法是将添加剂以其在烃油(例如矿物润滑油)或其它合适的溶剂中的溶液的10~80%(例如20~80%)(重量)活性组份浓缩物的形式加入。在制备成品润滑剂(例如曲轴箱马达油)时,通常可用润滑油稀释这些浓缩物,每重量份调合添加剂使用3~100(例如5~40(重量份润滑油。当然,使用浓缩物的目的不仅是为了便于在最终调合物中形成溶液和分散体,而且是为了使各种物质便于处理。例如通常以其在例如润滑油馏分中40~50%(重量)的浓缩物形式使用金属烃基磺酸盐或金属烷基酚盐。制备含有几种添加剂的润滑油调合物时,如果每种添加剂都是以浓缩物的形式各自加入油中,一般不会有问题。但在许多情况下,添加剂供应厂商愿提供一种所谓“调合添加剂”,它是许多种添加剂溶于烃油或其它合适的溶剂中的浓缩物。有些添加剂会在油浓缩物中相互起反应。业已发现,每一烃分子上的二羧酸部分的官能度(比例)为1.3或1.3以上的分散剂会与调合添加剂中的其它各种添加剂相互作用,特别是与高碱性金属清净剂反应,使掺合时粘度增加,而且在某些情况下,粘度还会随着时间的推移而继续增加,结果使调合物凝胶。这种粘度的增加会阻碍浓缩物的泵送,掺合和处理。虽然可用更多的稀释油使调合添加剂进一步稀释,以降低粘度从面抵销相互作用的效应,但由于稀释后使调合添加剂的装运、储存和其它处理费用提高,从而使采用调合添加剂的经济性变差。

1985年7月11日提出的系列号为754,001的专利申请公开了一些油溶性分散添加剂,在这些添加剂中,每分子数均分子量为1500~5000的聚烯烃被1.05~1.25个产生二羧酸的部分取代。该申请所描述的组合物的改进在于,维持分散剂在发动机运行时的油溶性所需的烃聚合物的每一多胺的酰化单元可减少。例如,一种由聚丁烯酰化剂衍生的典型分散剂,其每个 聚合物的二羧酸基的官能度为1.3或1.3以上,与每分子含4~7个氮原子的聚乙烯胺缩合,它的每一多胺就需2个或2个以上酰化单元才能具有足够的油溶性以在汽油和柴油发动机中很好地分散。

按照本发明的方法,将所选用的无灰分散剂、金属清净剂和润滑油加到热处理段中,在热处理段中这些组分混合并加热到至少100℃(例如约100~160℃),最好加热到至少110℃(例如约110~140℃),并保持约1~10小时,最好保持约2~6小时。热处理结束后,将经过处理的分散-清净剂润滑油混合物冷却至适合于后来的用途的温度,例如至少冷却至85℃或85℃以下(例如25~85℃)。业已发现,经过这样热处理的分散-清净剂润滑油混合物的储存稳定性大大改善,特别是当经热处理的混合物冷却后还要与其它所需添加剂混合以形成添加剂浓缩物(该浓缩物用于与润滑油混合以制成完全调配好的润滑油)时更是如此。

分散剂和清净剂可以与润滑油分别加入热处理段,也可与润滑油预先混合后加入。另外,润滑油可以先于、后于或与分散剂和清净剂同时加入热处理段中。由于分散剂是调合添加剂中体积百分比最大(一般为25~50%)的组分,因此通常先加分散剂,使罐的搅拌器浆叶浸没其中,以便于混合。

可以理解,热处理的确切温度和时间变化取决于下列因素,如所选用的特定的分散剂和清净剂、所需要的储存稳定性的改进程度等。此外还可理解,热处理的温度在上述规定的温度范围的较高处时,达到基本上相同的稳定性所需的热处理的时间可比采用较低温度进行热处理所需的时间缩短。

本发明的热处理改进分散剂-清净剂润滑油混合物的稳定性机理并不清楚,我们只要求所选用的热处理时间和温度足以使热处理后的混合物的稳定性得到改善,使其超过不经这种热处理步骤所能达到的稳定性。热处理的分散剂/清净剂混合物在所选用的热处理温度下保持至少1小时(更 好的是至少2小时,最好是至少3小时),将会基本稳定。判定稳定的依据是不出现混浊和沉淀物。将按照本发明的方法制得的经过热处理的分散剂-清净剂混合物与铜抗氧剂和二烷基二硫代磷酸锌抗磨剂中的至少一种物质混合而制得的完全调配好的润滑油组合物在约54℃下保持至少4天(更好的是至少10天,最好是至少30天)后就会基本稳定。判定稳定的依据是不出现混浊和沉淀。

参照下面将要列出的实施例可以看出其改进之处和说明改进的方法。

本发明的经过热处理的分散-清净剂油质混合物可用任何方便的方法加入到润滑油中。例如,可通过使这些混合物在油中分散或溶解的方法而将其直接加到油中,使分散剂和清净剂的浓度分别达到要求。这种与润滑油的掺合可以在室温或较高的温度下进行。另外也可将分散-清净剂混合物与合适的油溶性溶剂和基础油料共混以制成浓缩物,然后再将该浓缩物与润滑油基础油料掺合以获得最终组合物。这种分散-清净剂浓缩物一般含约3~45%(最好为约10~35%)(重量)分散添加剂、约3~45%(最好为约5~30%)(重量)金属清净添加剂(均按活性组分计),以及一般为浓缩物重量的30~90%(最好为40~60%)的基础油料。这种分散-清净剂浓缩物中所含分散剂与清净剂的重量比一般为约0.25∶1~5∶1,宜为0.5∶1~4.5∶1左右,较常见的为0.8∶1~4∶1(均按活性组分计)。

用于分散=清净剂混合物的润滑油基础油料中还另加其它添加剂,使其具有选定的功能以形成润滑油组合物。

A.分散剂

适用于本发明的无灰分散剂包括含氮或含酯分散剂,该分散剂选自:(ⅰ)长链烃取代的一元羧酸和二羧酸或其酐的油溶性盐、酰胺、酰亚胺、恶唑啉和酯,或其混合物;(ⅱ)有多胺直接与之相连的长链脂族烃;和 (ⅲ)由约1摩尔长链烃取代的苯酚与约1~2.5摩尔甲醛和约0.5~2摩尔多亚烷基多胺缩合而成的曼尼期(Mannich)缩合物;其中(ⅰ)、(ⅱ)和(ⅲ)中所述的长链烃基为C2~C10(例如C2~C5)单烯烃的聚合物,该聚合物的数均分子量至少约为1300。

A(ⅰ)用于本发明的长链烃基取代的一元羧酸或二羧酸物质(即酸、酐或酯)包括每摩尔聚烯烃平均用至少约0.8摩尔(一般为1.0~2.0,最好为1.05~1.25,1.1~1.2摩尔)的α-或β-不饱和C4~C10二羧酸或其酐或酯(例如富马酸,衣康酸,马来酸,马来酐,氯代马来酸,富马酸二甲酯,氯代马来酐,丙烯酸,甲基丙烯酸,巴豆酸,肉桂酸等)取代的长链烃(一般聚烯烃)。

宜与不饱和二羧酸反应的烯烃聚合物是C2~C10(如C2~C5)单烯烃占大部分摩尔数量的那些聚合物。这种烯烃包括乙烯,丙烯,丁烯,异丁烯,戊烯,辛烯-1,苯乙烯等。该聚合物可以是均聚物(如聚异丁烯),也可以是两种或两种以上上述烯烃的共聚物,例如乙烯与丙烯的共聚物,丁烯与异丁烯的共聚物,丙烯与异丁烯的共聚物等。其它共聚物包括其中小摩尔百分数(例如1~10%)的共聚物单体是C4~C18非共轭二烯烃的那些共聚物,例如异丁烯与丁二烯的共聚物,或乙烯、丙烯与1.4-己二烯的共聚物等。

在某些情况下,烯烃聚合物可以是完全饱和的,例如通过齐格勒-纳塔(Ziegler-Natta)合成法用氢作调节剂以控制分子量而制得的乙烯-丙烯共聚物。

烯烃聚合物的数均分子量通常约为1300~5000,更为常见的是约1300~4000。数均分子量约为1500~3000且每一聚合物链约有1个末端双键的烯烃聚合物特别有用。聚异丁烯是制备适用于本发明的非常有效的分散添加剂的特别有用的原料。这类聚合物的数均分子量可用几种已知的方法测定。一种方便的测定方法是凝胶渗透谱法,该方法还能提供分子量分布 数据(参见W.W.Yan,J,J,Kirkland和D.D.Bly,“Modern    Size    Exclusion    Liquid    Chromatography”,John    Wiley    and    Sons,New    York,1979)。

烯烃聚合物与C4-10不饱和二羧酸、酐或酯进行反应的方法在技术上是已知的。例如,美国专利第3.361,673和3,401,118号公开,只要将烯烃聚合物与二羧酸物质一起加热便可发生热“烯”反应(thermal“ene”reaction)。或者可先使烯烃聚合物囟化,例如氯代或溴化,使聚合物中含约1~8%(最好为3~7%)(重量)氯或溴,囟化的方法是在60~250℃(例如120~160℃)下,使氯或溴通过聚烯烃达0.5~10(最好1~7)小时左右。然后使囟化聚合物与足够量的不饱和酸或酐在100~250℃(通常约为180~220℃)下反应约0.5~10(例如3~8)小时,使所得的产物中含有所需的按每摩尔囟化聚合物计算的不饱和酸摩尔数。这种普通方法在美国专利第3,087,436、3,172,892、3,272,746号等专利中有介绍。

另外,还可将烯烃聚合物与不饱和酸物质混合和加热,同时将氯加到热的物质中。这种方法在美国专利第3,215,707、3,231,587、3,912,764、4,110,349、4,234,435号和英国专利第1,440,219号中公开了。

通过使用囟素,一般可使约65~95%(重量)的聚烯烃(例如聚异丁烯)与二羧酸物质反应。在不用囟素或催化剂的情况下进行热反应时,通常只有约50~75%(重量)的聚异丁烯会起反应。氯化有助于提高反应率。为了方便起见,前面所述的产生二羧酸的单元与聚烯烃的官能度比(例如1.0~2.0)是根据制造该产物所用的聚烯烃的总量(即反应的和未反应的聚烯烃的总和)计算的。

产生二羧酸的物质还可进一步与胺、醇(包括多羟基化合物,氨基醇等)反应以生成其它有用的分散添加剂。例如,如果产生酸的物质要进一步反应(例如中和),那么一般至少50%直至全部这样大量的酸单元都会起 反应。

可用作烃基取代的二羧酸物质的中和亲核反应剂的胺化合物包括单胺和更为可取的多胺(最好是多亚烷基多胺),其碳原子总数约为2~60,最好为2~40(例如3~20),分子中的氮原子数约为1~12,更好的是3~12,最好为3~9。这些胺可以是烃基胺或含其它基(如羟基,烷氧基,酰胺基,腈基,咪唑啉基等)的烃基胺。含1~6个羟基(最好是含1~3个羟基)的羟基胺特别有用。较为可取的胺是包括下面的通式所代表的胺的脂族饱和胺:

式中R、R′、R″和R″′各选自氢、C1~C25直链或支链烷基、C1~C12烷氧基、C2~C6亚烷基、C2~C12羟基甲氨基亚烷基和C1~C12烷基氨基C2~C6亚烷基;式中R″′还或进一步包含下式所表示的部分:

式中R′的定义同上,S和S′可以是相同或不同的数,该数为2~6,最好为2~4,t和t′可以是相同或不同的数,该数为0~10,较好的为2~7,最好为3~7,但t和t′之和须不大于15。为了使反应易于进行,选择R、R′、R″、R″′、S、S′、t和t′时应足以使式Ⅰa和Ⅰb的化合物有至少1个伯胺或仲胺基,最好有至少2个伯胺或仲胺基。为达此目的,在所述的R、R′、R″或R″′基中至少有一个必须选氢,或当R″′为H或IC部分有1个仲胺基时必须使式Ⅰb中的t至少为1。在以上诸式中最好的胺是式Ⅰb所代表的胺,它含有至少2个伯胺基和至少1个(最好是至少3个)仲胺基。

合适的胺化合物的例子有:1,2-二氨基乙烷,1,3二氨基丙烷,1,4-二氨基丁烷,1,6-二氨基己烷,聚乙烯胺类(如二亚乙基三胺,三亚乙基四胺,四亚乙基五胺),聚丙烯胺类(如1,2-丙二胺,二-(1,2-亚丙基)三胺,二-(1,3-亚丙基)三胺),N,N-二甲基-1,3-二氨基丙烷,N,N-二-(2-氨乙基)亚乙基二胺,N,N-二(2-羟乙基)-1,3-亚丙基二胺,3-十二烷氧基丙胺,N-十二烷基-1,3-丙二胺,三羟甲基氨基甲烷(THAM),二异丙醇胺,二乙醇胺,三乙醇胺,一、二和三脂胺,氨基吗啉(如N-(3-氨丙基)吗啉),及基混合物,但不限于这些。

其它可用的胺化合物包括脂环族二胺(如1,4-二(氨甲基)环己烷)和杂环氮化合物(如咪唑啉和用下面的通式代表的N-氨烷基哌嗪):

式中P1和P2可以相同或不同,各为1~4的整数,n、n2和n3可以相或不同,各为1~3的整数。这类胺的例子有2-十五烷基咪唑啉,N-(2-氨乙基)哌嗪等,但不限于这些。

采用胺化合物的商品混合物是有利的。例如,制备亚烷基胺的一个方法是使亚烷基二囟(如亚乙基二氯或亚丙基二氯)与氨反应,生成亚烷基胺的复杂混合物,其中亚烷基与成对的氮结合,生成如二亚乙基三胺、三亚乙基四胺、四亚乙基五胺的异构的哌嗪之类的化合物。市场上能买到价廉的、每分子平均含5~7个氮原子的聚乙烯胺类化合物,其商品名为“PolyamineH”、“Polyamine400”、“Dow    PolyamineE100”等。

可用的胺还包括多氧化烯多胺,如下面的两个化学式所代表的化合物:

NH2-亚烷基 O-亚烷基 mNH2(Ⅲ)

式中m的数值约为3~70,最好为10~35;和

R 亚烷基 O-亚烷基 NH2)a (Ⅳ)

式中n的数值约为1~40,但所有n的总和须为3~70左右,最好为6~35左右,R为碳原子数不超过10的多价饱和烃基,a表示R上的取代基数,a的数值为3~6,式(Ⅲ)或(Ⅳ)中的亚烷基可以是含约2~7个(最好是约2~4个)碳原子的直链或支链亚烷基。

上面的式(Ⅲ)或式(Ⅳ)的多氧化烯多胺(最好是多氧化烯二胺和多氧化烯三胺)的平均分子量约为200~4000,最好约为400~2000。较为可取的多氧化烯多胺包括平均分子量约为200~2000的多氧乙烯二胺、多氧丙烯二胺和多氧丙烯三胺。多氧化烯多胺可在市场上买到,例如可从 Jefferson    Chemical    Company,Inc购得,商品名为“Jeffamines    D-230,D-400,D-1000,D-2000,T-403”等。

胺易于与二羧酸物质(例如烯基琥珀酐)起反应,其方法是使胺与含5~95%(重量)二羧酸物质的油溶液加热至约100~250℃(最好为25~175℃),一般保持1~10小时(例如2~6小时),直至除去所需量的水为止。加热要有利于生成酰亚胺或酰亚胺与酰胺的混合物,而不是生成酰胺和盐。二羧酸物质与胺当量和这里所述的其它亲核反应剂的反应比可在很大的范围内变动,这取决于反应剂和生成的链的类型。通常每当量亲核反应剂(如胺)用0.1~1.0,最好用约0.2~0.6(如0.4~0.6)摩尔的二羧酸部分含量(例如接枝的马来酐含量)。例如,要使1摩尔烯烃与足以为每摩尔烯烃提供1.6摩尔琥珀酐基的数量的马来酐的反应产物转化为酰胺与酰亚胺的混合物宜使用约0.8摩尔的五胺(每分子有2个伯胺基和5个氮当量),也就是说,五胺的用量要足以为胺的每个氮当量提供约0.4摩尔(即1.6/(0.8×5)摩尔)的琥珀酐部分。

如美国专利第3,087,936和3,254,025号(引用在这里作参考材料)所介绍的那样,含氮分散剂可进一步进行硼化处理。这是易于做到的,其方法是用一种选自氧化硼、囟化硼、硼酸和硼酸酯的硼化合物处理该酰基氮分散剂,硼化合物的用量范围从能为每摩尔所述的酰化氮组合物提供约0.1原子份硼到为所述酰化氮组合物的每原子份氮提供约20原子份硼。实用上本发明组合物的分散剂的硼含量为所述的硼化酰基氮化合物总重的0.05~2.0%(例如0.05~0.7%)。产物中的硼为脱水硼酸聚合物(主要为[HBO2)]据认为是连接在分散剂的酰亚胺和二酰亚胺上作为胺盐,例如所述二酰亚胺的偏硼酸盐。

处理的方法是容易的,将占所述酰基氮化合物重量约0.05~4%(如1~3%)的所述硼化合物(最好是硼酸)通常以淤浆的形式加入所述的酰基氮化合物中,在135°~190℃(如140~170℃)下搅拌加热1~ 5小时,接着在该温度下用氮汽提。或者可将硼酸加到二羧酸物质与胺的热的反应混合物中,同时脱水,以进行硼化处理。

三羟甲基氨基甲烷(THAM)可与上述酸物质反应,如英国专利984,409所述,生成酰胺、酰亚胺或酯型添加剂,或如例如美国专利第4,102,798、4,116,876和4,113,639号所述,生成噁唑啉化合物和硼化噁唑啉化合物。

无灰分散剂也可以是由上述长链烃取代的二羧酸物质衍生的酯和由羟基化合物(如一元醇和多元醇)或芳香族化合物(如萘酸和萘酚)等衍生的酯。多元醇是最为可取的羟基化合物,最好含2~10个左右的羟基,例如1,2-乙二醇、二甘醇、三甘醇、四甘醇、一缩二丙二醇和其它亚烷基中含2~8个左右碳原子的亚烷基二醇。其它可用的多元醇包括丙三醇,丙三醇-油酸酯,丙三醇-硬脂酸酯,丙三醇一甲基醚,,二及其混合物。

酯类分散剂也可由不饱和醇(如烯丙醇,肉桂醇,炔丙醇,1-环己-3-醇和油醇)衍生。能产生本发明的酯的其它种类的醇有醚醇和氨基醇,包括例如含有一个或一个以上氧化烯基、氨基亚烷基或氨基亚芳基氧化亚芳基的氧化烯基取代的、氧化亚芳基取代的、氨基亚烷基取代的和氨基亚芳基取代的醇。其例子有2-乙氧基乙醇,乙氧乙氧基乙醇,N,N,N′,N′-四羟基三亚甲基二胺和含有达150个氧化烯基(其烯基含1~8个左右的碳原子)的醚醇。

酯类分散剂可以是琥珀酸的二酯或酸式酯,即部分酯化的琥珀酸;也可以是部分酯化的多元醇或酚,即含有游离醇或酚式羟基的酯。上述酯的混合物也在本发明的范围之内。

酯类分散剂可按美国专利第3,381,022号所述的用几种已知方法中的一种方法制备。酯类分散剂,与上述的含氮分散剂一样,也可进行硼化处理。

能与前面所述的长链烃取代的二羧酸物质反应以生成分散剂的羟基胺包括2-氨基-1-丁醇,2-氨基-2-甲基-1-丙醇,对(β-羟乙基)-苯胺,2-氨基-1-丙醇,3-氨基-1-丙醇,2-氨基-2-甲基-1,3-丙二醇,2-氨基-2-乙基-1,3-丙二醇,N-(β-羟丙基)-N′-(β-氨乙基)哌嗪,三(羟甲基)氨基甲烷,2-氨基-1-丁醇,乙醇胺,β-(β-羟乙氧基)-乙胺,等等。也可采用这些胺或类似胺的混合物。上述适合于与烃基取代的二羧酸或酐反应的亲核反应剂包括胺、醇和具有混合和含胺和含羟基反应官能团的化合物(即氨基醇)。

一类较为可取的无灰分散剂是由琥珀酐取代的聚异丁烯与聚乙烯胺(例如四亚乙基五胺,五亚乙基六胺)、聚氧乙烯胺和聚氧丙烯胺(如聚氧丙烯二胺)、三羟甲基氨基甲烷和及其组合反应而衍生的。一种特别可取的分散剂组合物是由(A)琥珀酐基取代的聚异丁烯与(B)一种羟基化合物(如)、(C)一种多氧化烯基多胺(如多氧化丙烯基二胺)和(D)一种多亚烷基多胺(如多亚乙基二胺和四亚乙基五胺)反应而组成,反应时每摩尔(A)用(B)和(D)各约0.3~2摩尔,用(C)约0.3~2摩尔(见美国专利3,804,763。另一较为可取的分散剂组合物是由(A)聚异丁烯基琥珀酐与(B)一种多亚烷基多胺(如四亚乙基五胺)和(C)一种多元醇或多羟基取代的脂族伯胺(如或三羟甲基氨基甲烷)组合而成(参见美国专利3,652,511)。

A(ⅱ)可用作本发明的无灰分散剂的还有,在该分散剂中,含氮的多胺直接与长链脂族烃相连,囟代烃上的囟素被各种亚烷基多胺置换,如美国专利3,275,554和3,565,804号所示。

A(ⅲ)另一种无灰分散剂是技术上已知的含曼尼期碱或曼尼期缩合产物的含氮分散剂。通常制备这种曼尼期缩合产物的方法是如美国专利第3,442,808号所公开的那样,使约1摩尔的烷基取代的一羟基苯或多羟基苯与约1~2.5摩尔羰基化合物(如甲醛和多聚甲醛)和约0.5~2摩尔 多亚烷基多胺进行缩合。这种曼尼期缩合产物在其苯基上可含有一长链高分子量烃(例如 Mn为1500或1500以上),或者可如美国专利第3,442,808号所示,与含有烃的化合物,例如多烯基琥珀酐反应。

B.金属清净剂

含金属的防锈剂和(或)清净剂常与无灰分散剂一起使用。这类清净剂和防锈剂包括金属磺酸盐,烷基酚,硫化烷基酚,烷基水杨酸盐,环烷酸盐和其它油溶性一元羧酸和二羧酸。常用作清净剂的高碱性金属盐特别容易与无灰分散剂相互作用。这些含金属的防锈剂和清净剂在润滑油中的用量通常为润滑油组合物的总重的0.01~10%,例如0.1~5%。这种含金属的防锈剂和清净剂在船用柴油机润滑油中的用量一般可达约20%(重量)。

高碱性碱土金属磺酸盐常用作清净剂。其常用的制造方法是将包含油溶性磺酸盐或烷芳基磺酸与过量(超过使任何存在的磺酸完全中和所需的量)的碱土金属化合物的混合物加热,然后使过剩的金属与二氧化碳反应,生成合乎高碱性要求的分散碳酸盐配合剂。磺酸一般是通过烷基取代的芳香烃的磺化而制得的,该烷基取代的芳香烃可由石油分馏和(或)萃取而得,或由芳香烃进行烷基化而得,例如使苯、甲苯、二甲苯、萘、联苯和囟素衍生物(如氯苯,氯甲苯和氯萘)进行烷基化而得。烷基化可在催化剂存在下进行,所用的烷基化剂含约3~30个以上碳原子。例如,囟代烷属烃、由烷属烃脱氢而得的烯烃、由乙烯、丙烯等制得的聚烯烃都是适用的。烷芳基磺酸盐的每个烷基取代的芳族部分一般含约9~70或70个以上的碳原子,最好含约16~50个碳原子。

可用于中和这些烷芳基磺酸以生成磺酸盐的碱土金属化合物包括镁、钙和钡的氧化物、氢氧化物、醇盐、碳酸盐、羧酸盐、硫化物、氢硫化物、硝酸盐、硼酸盐和醚。其例子有氧化钙,氢氧化钙,醋酸镁和硼酸镁。如 上面已提出的那样,碱土金属化合物的用量要超过完全中和烷芳基磺酸所需的量。一般其用量为完全中和所需的金属的化学计算量的100~220%,最好至少为125%。

其它各种制备碱性碱土金属烷芳基磺酸盐的方法也是已知的,例如美国专利第3,150,088和3,150,089号介绍的方法,它是通过醇盐-碳酸盐配合物与烷芳基磺酸盐在烃溶剂稀释油中进行水解而获得高碱性的。

一种较为可取的碱土金属磺酸盐添加剂是一种烷芳基磺酸镁,其总碱值约为300~400,其磺酸镁的含量为添加剂体系总重的约25~32%,分散在矿物润滑油中。

中性的金属磺酸盐常用作防锈剂。多价金属烷基水杨酸盐和环烷酸盐物质是已知的润滑油组合物添加剂,用以改善润滑油组合物的高温性能和减少含碳物质在活塞上的沉积(美国专利第2,744,069号)。多价金属烷基水杨酸盐和环烷酸盐的保留碱度的提高可利用碱土金属(例如钙),C8~C26烷基水杨酸盐和酚盐混合物(见美国专利第2,744,069号)或烷基水杨酸的多价金属盐来实现,由苯酚的烷基化得到的酸接着进行酚盐化、羧化和水解(见美国专利第3,704,315号),然后可用一般已知的转化方法将其转化成高碱性盐。这些含金属的防锈剂的保留碱度宜为60~150 TBN级。在有用的多价金属水杨酸盐和环烷酸盐物质中还包括亚甲桥和硫桥物质,它们易于由烷基取代的水杨酸或环烷酸或由二者分别或一起与烷基取代的苯酚形成的混合物衍生。美国专利第3,595,791号介绍了碱性硫化水杨酸盐及其一种制备方法。这些物质包括用通式:

所代表的芳族酸的碱土金属(特别是镁、钙、锶和钡)盐,

在上式中,Ar是含1~6个环的芳基,R1是含约8~50个(宜为12~30个,最好为12个)碳原子的烷基,X为硫(-S-)或亚甲基(-CH2-)桥,y为0~4的数,n为0~4的数。

高碱性亚甲基桥水杨酸盐-酚盐是容易用传统的方法制备的,例如使酚烷基化,接着使成酚盐,进行羧化,水解,使偶合剂(如亚烷基二囟)进行亚甲基桥接,接着在碳化的同时生成盐。下面通式(Ⅳ)所代表的亚甲基桥接的苯酚-水杨酸的高碱性钙盐(TBN为60~150)在本发明中是十分有用的。

硫化金属酚盐可以看作是“硫化酚的金属盐”,因此是指下面通式(Ⅶ)所代表的化合物的金属盐,不管是中性的还是碱性的:

式中X=1或2,n=0,1或2;或是这样一种化合物的聚合形式,式中R为烷基,n和X都是整数,各为1~4,在所有R中的碳原子平均数至少为9左右,以保证其具有足够的油溶性。各R可含5~40个(最好8~20个)碳原子。制备金属盐的方法是使烷基酚硫化物与足够量的含金属物质反应,以使硫化金属酚盐具有所要求的碱度。

不管制备方法如何,有用的硫化烷基酚中硫的含量为硫化烷基酚重量的约2~14%,最好为约4~12%。

可以用技术上已知的方法使硫化烷基酚与含有金属的物质(包括氧化物、氢氧化物和配合物)反应使其转化,含金属的物质的用量应足以中和所述的酚,需要时还可使产物具有所要求的高碱性。最好采用金属的乙二醇醚溶液的中和方法。

在中性或正常的硫化金属酚盐中金属与酚环的比例约为1∶2。“高碱性”或“碱性”硫化金属酚盐是其中的金属与酚的比例大于化学计算的比例的硫化金属酚盐,例如碱性的硫化金属十二烷基酚盐的金属含量比相应的正常硫化金属酚盐中的金属含量高出100%和100%以上,其中过量,金属是以油溶性或分散的形式(如通过与CO2反应)生成的。

含镁和钙的添加剂虽然在其它方面是有利的,但会使润滑油氧化的倾向加强。特别是对高碱性磺酸盐来说更是如此。

因此,按照一较为可取的实施方案,本发明提供一种还含2~8000ppm钙或镁的曲轴箱润滑油组合物。

镁和(或)钙一般存在于碱性或中性清净剂中(如其磺酸盐和酚盐),我们的优选的添加剂是中性或碱性磺酸镁或钙。最好油中含500~5000ppm钙或镁。宜采用碱性磺酸镁和钙。

C.润滑油基础油料

按照本发明的方法进行热处理的无灰分散剂和金属清净剂要与一种润滑油基础油料混合,该基础油料含有具有润滑粘度的油,包括天然的和合成的润滑油及其混合物。

天然油包括动物油和植物油(例如,蓖麻油,猪油),液体石油润滑油以及经加氢精制、溶剂精制或酸精制的链烷型、环烷型或链烷-环烷混合型矿物润滑油。由煤或页岩产生的具有润滑粘度的油也是可用的基础油料。

合成润滑油包括烃油和囟化烃油,如聚合的和共聚的烯烃(如聚丁烯,聚丙烯,丙烯-异丁烯共聚物,氯化聚丁烯,聚(1-己烯),聚(1-辛烯),聚(1-癸烯));烷基苯(如:十二烷基苯,十四烷基苯,二壬基苯,二(2-乙基己基)苯);多联苯(如联苯,三联苯,烷基化多酚);和烷基化二苯醚和烷基化二苯硫化物及其衍生物,类似物和同系物。

烯化氧聚合物和共聚物及其衍生物(其末端羟基已通过酯化、醚化等改变)是另一类已知的合成润滑油。其例子有通过氧化乙烯或氧化丙烯的聚合而制得的聚氧化烯聚合物,这些聚氧化烯聚合物的烷基醚和芳基醚(如平均分子量为1000的甲基-聚异丙二醇醚,分子量为500~1000的聚乙二醇二苯基醚,分子量为1000~1500的聚丙二醇二乙基醚);及其单羧酯和多羧酯,例如四甘醇的醋酸酯、混合的C3~C8脂肪酸酯和C13含氧酸二酯。

另一类适用的合成润滑油包括二羧酸(如苯二甲酸,琥珀酸,烷基琥珀酸和烯基琥珀酸,马来酸,壬二酸,辛二酸,癸二酸,富马酸,己二酸,亚油酸二聚物,丙二酸,烷基丙二酸,烯基丙二酸)与各种醇(如丁醇,己醇,十二烷基醇,2-乙基己基醇,1,2-亚乙基二醇,二甘醇一醚,丙二醇)生成的酯。这些酯的具体例子有己二酸二丁酯,癸二酸二(2-乙基己基)酯,富马酸二正己酯,癸二酸二辛酯,壬二酸二异辛酯,壬二酸二异 癸酯,苯二甲酸二辛酯,苯二甲酸二癸酯,癸二酸二(十二烷基)酯,亚油酸二聚物的2-乙基己基双酯,以及由1摩尔癸二酸与2摩尔四甘醇和2摩尔2-乙基己酸反应而生成的混合酯。

可作为合成油使用的酯还包括由C5~C12一元羧酸与多羧基化合物和多元醇醚(如新戊二醇,三羟甲基丙烷,,二和三)制得的酯。

硅基油如聚烷基-、聚芳基-、聚烷氧基-、或聚芳氧基硅氧烷油和硅酸油是另一类可用的合成润滑剂,它们包括硅酸四乙酯、硅酸四异丙酯、硅酸四(2-乙基己基酯)、硅酸四(4-甲基-2-乙基己基)酯、硅酸四-(对-叔丁基-苯基)酯、六-(4-甲基-2-五氧)二硅氧烷、聚甲基硅氧烷和聚甲基苯基硅氧烷。其它合成润滑油包括含磷酸的液体酯(如磷酸三甲苯酯,磷酸三辛酯,癸基膦酸的二乙酯)和聚合的四氢呋喃。

未精制油、精制油和再精制油料可用作本发明的润滑剂。未精制油是直接由天然或合成原油获得的未经进一步提纯处理的油。例如,直接由页岩干馏而得的页岩油,直接由蒸馏得到的石油油料或直接由酯化过程得到的酯油,这些未经进一步处理即使用的油为未精制油。精制油与未精制油相似,所不同的是精制油已经过一次或一次以上的提纯步骤进行了进一步处理,以改善其一种或以上性能。很多提纯方法如蒸馏、溶剂萃取、酸或碱萃取、过滤和渗滤对于本领域的熟练技术人员来说都是熟知的。再精制油料是用类似于取得精制油的方法再处理已精制过的油。这种再精制油料也叫做再生油或再加工油,而且常常还用除去用过的添加剂和油的破坏产物的方法再进行加工。

调合添加剂

如上所述,用本发明的方法制得的经过热处理改善了稳定性的高分子量无灰分散剂与金属清净剂的调合物可以再与一种或一种以上的其它添加剂混合以制得调合添加剂,该调合添加剂可与润滑油基础油料掺合以制得全调合润滑油。

一般存在于这类调合物中的典型其它添加剂包括抗氧化剂、粘度调节剂、缓蚀剂、摩擦改进剂、另外的分散剂和清净剂、防沫剂、抗磨剂、倾点下降剂、防锈剂等。

适用于本发明的铜抗氧化剂包含油溶性铜化合物。铜可以合适的油溶性铜化合物的形式。油溶性是指该化合物在正常的掺合条件下能溶于油中或调合添加剂中。铜化合物可以是亚铜或正铜形式。铜可以是二羟基硫代磷酸铜或二羟基二硫代磷酸铜的形式,其中铜可以在上述反应中代替化合物中的锌,虽然1摩尔氧化亚铜或氧化铜可分别与1摩尔或2摩尔的二硫代磷酸反应。另外,铜也可以合成的或天然的羧酸的铜盐的形式加入。其例子包括C10~C18脂肪酸(如硬脂酸或棕榈酸),但最好还是用不饱和酸(如油酸)或支链羧酸(如分子量为200~500的环烷酸)或天然羧酸,因为生成的羧酸铜的输送性能和溶解性能较好。通式为(RR′NCSS)nCu的油溶性二硫代甲氨酸铜也是可用的,该通式中的n为1或2,R和R′为相同的或不同的烃基,含有1~18个(最好为2~12个)碳原子,包括烷基、烯基、芳基、芳烷基、烷芳基和环脂基。最好R和R′是C2-8烷基。例如乙基,正丙基,异丙基,正丁基,异丁基,仲丁基,戊基,正己基,异己基,正庚基,正辛基,癸基,十二烷基,十八烷基,2-乙基己基,苯基,丁基苯基,环己基,甲基环戊基,丙烯基,丁烯基等。为使其具有油溶性,R和R′的碳原子的总数一般约为 5或5以上。也可使用铜的磺酸盐、酚盐和乙酰丙酮盐。

可用的铜化合物的例子有:烯基琥珀酸或酐的铜(Cu和(或)Cu)盐。这些盐本身可以是碱性、中性或酸性的。它们可通过使(a)上述无灰分散剂-A(ⅰ)中的任一至少有一个游离羧酸基的物质与(b)一种活性金属化合物进行反应而制得。适用的活性金属化合物包括正铜或亚铜的氢氧化物、氧化物、醋酸盐、硼酸盐和碳酸盐或碳式碳酸铜。

本发明的金属盐的例子有聚异丁烯基琥珀酐的铜盐(以下称作Cu-PIBSA)和聚异丁烯基琥珀酸的铜盐。最好所选用的金属是二价形式的金属,如Cu+2。宜采用的基质是其中烯基的分子量约在700以上的多烯基琥珀酸。烯基的数均分子量( Mn)宜为900~1400,且不超过2500,尤以约950的Mn为最好。在A(ⅰ)分散剂一节中所列出的物质中尤以聚异丁烯琥珀酸(PIBSA)最佳。这些物质要能溶于溶剂(如矿物油)中,并在带金属的物质的水溶液(或淤浆)存在下加热。加热的温度为70°~200℃左右。110°~140℃的温度是完全适当的。有时,根据所生成的盐的性质,不能让反应在约140℃以上的温度下保持较长时间(例如超过5小时),否则盐会分解。

铜抗氧化剂(例如Cu-PIBSA,油酸铜或其混合物)的用量一般应使成品润滑油组合物或燃料组合物中的金属含量达50~500ppm(重量)左右。

用于本发明的铜抗氧化剂是价廉的,且在低浓度的情况下是有效的,因此不会明显提高产品的成本。所得的结果常优于以前使用的抗氧化剂,以前使用的抗氧化剂是昂贵的,而且要使用高浓度。在该用量的范围内,铜化合物不会干扰润滑组合物的其它组分的性能,在很多情况下,除ZDDP之外只用铜化合物这一种抗氧化剂时能获得十分满意的结果。使用铜化合物可部分地或全部代替补充抗氧化剂的需要。例如,在特别苛刻的条件下需要补充传统的抗氧化剂,但所需的补充抗氧化剂的量是很小的, 远远少于没有铜化合物时的所需量。

虽然任何有效量的铜抗氧化剂都可加入到润滑油组合物中,但这种加入的铜抗氧化剂的有效量应足以使加入润滑油组合物中的铜的量达到润滑油组合物的重量的5~500ppm,宜为10~200ppm,更好的是10~180ppm,最好为20~130(例如90~120)ppm。当然这最佳量除其它因素外还取决于润滑油基础油料的质量。

缓蚀剂也叫抗腐蚀剂,能减少与润滑油组合物接触的金属零件的损坏。缓蚀剂的例子有磷硫化烃和磷硫化烃与碱土金属氧化物或氢氧化物(最好在烷基化酚或烷基酚硫酯的存在下和还最好在二氧化碳的存在下)进行反应而得的产物。磷硫化烃的制备方法是使一种合适的烃(例如萜)、一种C2~C6烯烃聚合物重石油馏分(如聚异丁烯)与5~30%(重量)的磷的硫化物在150°~600°F下反应0.5~15小时。按美国专利第1,969,324所述的方法使磷硫化烃中和。

氧化抑制剂可使矿物油在使用过程中变质的倾向减少,变质的表现是在金属表面上可以看到有淤渣和像漆那样的沉积物而且粘度增加。这种氧化抑制剂包括最好具有C5~C12烷基侧链的烷基酚硫酯的碱土金属盐,钙壬基酚硫化物,钡叔辛基苯基硫化物,二辛基苯基胺,苯基α-萘基胺,磷硫化或硫化烃等。

摩擦改进剂用来使润滑油组合物(如自动传动液)具有适当的摩擦特性。

适用的摩擦改进剂的典型例子可参见美国专利第3,933,659号,该专利公开了脂肪酸酯和酰胺;美国专利第4,176,074号介绍了聚异丁烯基琥珀酐-氨基链烷醇的钼配合物;美国专利第4,105,571号公开了二聚脂肪酸的甘油酯;美国专利第3,779,928号公开了烷烃膦酸盐;美国专利第3,778,375号公开了一种膦酸盐与一种油酰胺的反应产物;美国专利第3,852,205号公开了S-羧基-亚烷基烃基琥珀酰亚胺,S-羟基-亚烷 基烃基琥珀酸及其混合物;美国专利第3,879,306号公开了N-(羟基-烷基)亚烷基琥珀酰胺酸或琥珀酰亚胺;美国专利第3,932,290号公开了二-(低级烷基)亚磷酸盐与环氧化物的反应产物;美国专利第4,028,258号公开了磷硫化N-(羟基烷基)亚烷基琥珀酰亚胺的氧化烯加成物。以上专利的公开内容在这里予以引用。最好的摩擦改进剂是甘油-油酸酯和二油酸酯和烃基取代的琥珀酸或酐的琥珀酸酯或其金属盐,以及如美国专利第4,344,853号所介绍的硫双链烷醇。

倾点下降剂可降低液体的流动温度或倾点。这种倾点下降剂是众所周知的。能使液体的低温流动性达到最佳化的这种添加剂的典型是富马酸C8-C18二烷基酯-醋酸乙酯共聚物,聚甲基丙烯酸酯和萘蜡。

聚硅氧烷型的抗沫剂(如硅油和聚二甲基硅氧烷)可控制泡沫。

另一类可与无灰分散剂相互作用的添加剂是二烃基二硫代磷酸金属盐,它常用作抗磨剂,同时也提供抗氧活性。在润滑油中最常用的是其锌盐,用量为润滑油组合物总重的0.1~10%,最好为0.2~2%。它们可按已知的方法予以制备,通常是先通过醇或酚与P2S5反应,生成二硫代磷酸,然后用合适的锌化合物中和该二硫代磷酸。

可用的醇混合物,包括伯醇与仲醇的混合物,仲醇一般提供抗磨性能,而伯醇则能提高热稳定性。二者的混合物是特别有用的。总的说来,任何碱性或中性的锌化合物均可使用,但最常用的是其氧化物、氢氧化物和碳酸盐。商品添加剂由于在中和反应中使用了过量的碱性锌化合物,因此常含过量的锌。

适用于本发明的二烃基二硫代磷酸锌是二硫代磷酸的二烃基酯的油溶性盐,可用下式表示:

式中R和R′可以是相同或不同的烃基,含有1~18个(最好为2~12个)碳原子,包括烷基、烯基、芳基、芳烷基、烷芳基和环脂基。最好的R和R′是C2-8烷基。例如乙基,正丙基,异丙基,正丁基,异丁基,仲丁基,戊基,正己基,异己基,正辛基,癸基,十二烷基,十八烷基,2-乙基己基,苯基,丁基苯基,环己基,甲基环戊基,丙烯基,丁烯基等。为使其具有油溶性,二硫代磷酸中的碳原子(即式Ⅷ中的R和R的碳原子)的总数一般约为5或5以上。

可用作本发明的防锈剂的油溶性有机化合物包括非离子表面活性剂(如多氧化烯多醇及其酯)和离子表面活性剂(如烷基磺酸)。这类防锈化合物是已知的,可用传统的方法制备。可用作本发明的油质组合物的防锈添加剂的非离子表面活性剂之所以具有表面活性剂性能是由于其有许多弱的稳定基团(如醚键)。制备含醚键的非离子防锈剂的方法是用过量的低级的烯化氧(如氧化乙烯和氧化丙烯)使含活性氢的有机基质烷氧基化,直至分子中的烷氧基数达到要求为止。

较为可取的防锈剂是多氧化烯多醇及其衍生物。这类物质能在市场上从各种来源买到:从Wyandotte    Chemicals    Corporation可买到Pluronic    Polyols;从Dow    Chemical    Co.可买到Polyglycol    112-2,这是一种由氧化乙烯和氧化丙烯衍生的液态三醇;和从Union    Carbide    Corp.可买到Tergitol(十二烷基苯基或一苯基聚乙二醇醚)和Ucon(聚亚烷基二醇及其衍生物)。这些只是可用作本发明的改 进的组合物的防锈剂的少数商品。

除多羟基化合物本身外,由多羟基化合物与各种羧酸反应而得的酯也是适用的。可用于制备这种酯的酸有月桂酸,硬脂酸,琥珀酸和含碳原子可达20个的烷基或烯基取代的琥珀酸。

较好的是将多羟基化合物制成嵌段聚合物。例如,羟基取代的化合物R-(OH)n(式中n为1~6,R为一元醇或多元醇、酚、萘酚的残基)与氧化丙烯反应生成疏水碱。然后该疏水碱与氧化乙烯反应以提供亲水部分,结果产生既有疏水部分又有亲水部分的分子。这些部分的相对大小可通过调节反应剂的比例、反应时间等进行调整,这时本领域的专业人员来说是显而易见的。因此技术上能制备分子中既有疏水部分又有亲水部分的多羟基化合物,疏水部分与亲水部分的比例使防锈剂能不管基础油料的差异和其它添加剂的存在而适用于任何润滑剂组合物。

如果规定的润滑组合物需要更好的油溶性,可将疏水部分增加和(或)将亲水部分减少。如果需要对油在水中的乳液有更大的破乳能力,也可通过调整亲水部分和(或)疏水部分而达此目的。

R-(OH)n化合物的例子包括亚烷基多醇,如亚烷基二醇、亚烷基三醇、亚烷基四醇等,(如乙二醇、丙二醇、丙三醇、、山梨醇、甘露糖醇等)。也可用芳香族羟基化合物,如烷基化了的一元酚和多元酚和萘酚,如庚基苯酚、十二烷基苯酚等。

其它的适用的破乳剂包括美国专利第3,098,827和2,674,619号所公开的酯。

可从Wyandotte    Chemical    Co.购得的商品名为Pluronic    polyols的液态多羟基化合物和其它类似的多羟基化合物特别适合于作防锈剂。这些Pluromc    Polyols可用下式表示:

式中x、y和z为大于1的整数,使CH2CH2O基占二元醇的总分子量的约10~40%,该二元醇的平均分子量约为1000~5000。

制备这些产物的方法是先使氧化丙烯与丙二醇缩合以生成疏水碱

然后用氧化乙烯处理该缩合产物,以在分子的两端加上亲水部分。为了取得最好的结果,氧化乙烯单元应占分子的重量的10~40%。这种多羟基化合物的分子量为2500~4500,而且氧化乙烯单元约占分子重量的10~15%的产物是特别适用的。分子量约为4000且其中10%是属于(CH2CH2O)单元的多羟基化合物是特别好的。烷氧基化的脂肪胺、酰胺、醇等也是有用的,它们包括美国专利第3,849,501号所述的那种用C9~C16烷基取代的酚(例如-庚基、二庚基、辛基、壬基、癸基、十一烷基、十二烷基和十三烷基的酚)处理的烷氧基化脂肪酸衍生物。

粘度调节剂使润滑油可在高温和低温下工作并使其在高温下仍具有较高的粘度而在低温下也具有满意的粘度或流动性。粘度调节剂一般是高分子量烃聚合物,包括聚酯。粘度调节剂还可进行衍生,使其具有其它性质或功能,例如提高分散性能。这些油溶性粘度调节聚合物的数均分子量一般为103~106(最好为104~106,例如20,000~250,000),用凝胶渗透谱法或渗透压力测定法测定。

适用的烃聚合物的例子有二种或二种以上的C2~C30单体(例如C2~C8烯烃,包括α-烯烃和内烯烃,可以是直链的或支链的、脂族、芳族、烷基芳族、环脂族等)生成的均聚物和共聚物。它们常常是乙烯与C3~C30烯烃的共聚物,最好是乙烯与丙烯的共聚物。可以使用的其它聚合物如聚异丁烯,C6和C6以上α-烯烃的均聚物和共聚物,无规立构聚丙烯,氢化聚合物和苯乙烯与例如异戊二烯和(或)丁二烯的共聚物和三元共聚物及其氢化衍生物。该聚合物可通过例如捏和、挤压、氧化、热降解而使其分子量下降,而且它可氧化而含氧。还有衍生的聚合物,如用活性单体(如马来酐)进行后接枝的乙烯-丙烯共聚物,该共聚物可进一步与醇或胺(如亚烷基多胺或羟基胺)反应(例如参看美国专利第4,089,794、4,160,739、4,137,185号);或用氮化合物反应或接枝的乙烯-丙烯共聚物,如美国专利第4,068,056、4,068,058、4,146,489和4,149,984号所述。

最好的烃聚合物含15~90%(最好是30~80%)(重量)的乙烯、10~85%(最好20~70%)(重量)的一种或一种以上的C3~C28(宜为C3~C18,最好为C3~C8)α-烯烃。虽然不是主要的,但这种共聚物的用X射线和差示扫描量热计方法测定的结晶度最好小于25%(重量)。乙烯和丙烯的共聚物是最为适用的。其它适合于代替丙烯以生成共聚物的α-烯烃或可与乙烯和丙烯一起使用以生成三元共聚物、四元共聚物等的α-烯烃有,1-丁烯,1-戊烯、1-己烯、,1-庚烯,1-辛烯,1-壬烯,1-癸烯等;还有支链α-烯烃,如4-甲基-1-戊烯,4-甲基-1-己烯,5-甲基-1-戊烯,4,4-二甲基-1-戊烯和6-甲基-1-庚烯等及其混合物。

由乙烯,所述的C3-28α-烯烃和非共轭二烯烃或这些二烯烃的混合物生成的三元共聚物、四元共聚物等也可使用。非共轭二烯烃的用量一般为乙烯和α-烯烃总重的0.5~20摩尔百分数,最好约为1~7摩尔百分 数。

聚酯粘度指数改进剂一般为烯属不饱和C3~C8一元羧酸和二羧酸(如甲基丙烯酸和丙烯酸、马来酸、马来酐、富马酸等)的酯的聚合物。

可以采用不饱和酯的例子有碳原子数至少为1(最好为12~20)的脂族饱和一元醇的酯,例如丙烯酸癸酯,丙烯酸月桂酯,丙烯酸硬脂酰酯,丙烯酸二十烷基酯,丙烯酸二十二烷基酯,甲基丙烯酸癸酯,富马酸二戊酯,甲基丙烯酸月桂酯,甲基丙烯酸十六烷基酯,甲基丙烯酸硬脂酰酯等及其混合物。

其它酯包括C2~C22脂肪酸或一元羧酸的乙烯醇酯,最好是饱和的酯如醋酸乙酯、月桂酸乙酯、棕榈酸乙酯、硬脂酸乙酯、油酸乙酯等及其混合物。乙烯醇酯与不饱和酸酯的共聚物(如醋酸乙酯与富马酸二烷基酯的共聚物)也可使用。

该酯类还可与其它不饱和单体(例如烯烃)共聚,例如每摩尔不饱和酯或每摩尔不饱和酸或酐与0.2~5摩尔的C2~C20脂族或芳族烯烃共聚,接着进行酯化。例如,苯乙烯与马来酐的共聚物用醇和胺酯化是已知的,例如可见美国专利第3,702,300号。

这种酯聚合物可用可聚合的不饱和含氮单体接枝或由酯与其共聚,使粘度指数改进剂易于分散。适用的不饱和含氮单体包括那些含4~20个碳原子的单体,例如氨基取代的烯烃(如对(β-二乙基氨乙基)苯乙烯;带有可聚合的烯属不饱和取代基的碱性含氮杂环,例如乙烯基吡啶、乙烯基烷基吡啶(如2-乙烯基-5-乙基吡啶,2-甲基-5-乙烯基吡啶,2-乙烯基吡啶,3-乙烯基吡啶,4-乙烯基吡啶,3-甲基-5-乙烯基吡啶,4-甲基-2-乙烯基吡啶,4-乙基-2-乙烯基吡啶和2-丁基-5-乙烯基吡啶等)。

N-乙烯基内酰胺也是适用的,例如N-乙烯基吡咯烷酮或N-乙烯基酮。

乙烯基吡咯烷酮是较为可取的,其例子有N-乙烯基吡咯烷酮,N-(1-甲基乙烯基)吡咯烷酮,N-乙烯基-5-甲基吡咯烷酮,N-乙烯基-3,3,-二甲基吡咯烷酮,N-乙烯基-5-乙基吡咯烷酮等。

本发明的组合物还可含有其它添加剂,如前面所述的那些和其它含金属的添加剂,如含钡和钠的添加剂。

本发明的润滑组合物还可包含铜铅的缓蚀剂。这种化合物的典型是含5~50个碳原子的噻重氮多硫化物,其衍生物及其聚合物。最好的是美国专利第2,719,125、2,719,126和3,087,932号所述的那些1,3,4-噻重氮衍生物;特别适用的是市场上能买到的商品名为Amoco    150的2,5双(叔辛二硫)-1,3,4-噻重氮。其它也适用的类似材料可参看美国专利第3,821,236、3,904,537、4,097,387、4,107,059、4,136,043、4,188,299和4,193,882号所述。

其它适用的添加剂是噻重氮的硫代和多硫代亚磺酰胺,如英国专利说明书1,560,830所述。将这些化合物加入润滑组合物中时,我们认为其加入量宜为组合物重量的0.01~10%,最好为0.1~5.0%。

诸多种添加剂中的某些添加剂可产生多种效果,例如分散-氧化抑制剂。这方面是众所周知的,不需要在这里作进一步说明。

一般是将有效量的含这些传统添加剂的组合物掺入基础油料以提供其正常的附带功能。对这种添加剂在全调配润滑油中的典型有效量(指各种活性组分)作如下的说明:

当同时采用其它添加剂时,最好是(虽然不是必需的)制备添加剂浓缩物,该浓缩物含有本发明的混合物中所用的一种或一种以上分散剂、防锈剂和铜抗氧剂的浓缩溶液或分散体(按前述浓缩物量),还有一种或一种以上所述的其它添加剂(所述的浓缩物组成添加剂混合物,这里称之为 调合添加剂),这样几种添加剂可以同时加到基础油料中以形成润滑油组合物。可使用溶剂和采用混合时同时缓和加热的方法使添加剂浓缩物便于溶解在润滑油中,但这并不是必不可少的。浓缩物或调合添加剂一般调配成含有适当量的添加剂,使调合添加剂与预先确定的基础油料混合时在成品组合物中达到所要求的浓度。例如,本发明的添加剂混合物可以与其它所要的添加剂一起加到少量基础油料或其它配伍溶剂中,以形成一般含有约2.5~90%(宜为15~75%左右,最好为25~60%左右)(重量)添加剂活性组分总量的调合添加剂,其余部分为基础油料。

成品调合物中一般有10%(重量)为调合添加剂,其余部分为基础油料。

这里表示的所有所述重量百分比除另有说明者外,是根据添加剂的活性组分的含量,和(或)任何调合添加剂总重或者是根据每种添加剂的活性组分重量之和加上全部油或稀释剂的重量的调合物总重。

参考以下的实施例可进一步了解本发明,其中所有份数,另有说明者外,均指重量份,这些实施例包括本发明的最佳实施方案。

实施例1分散剂的制备

A部分

将100份聚异丁烯(1725 Mn)与7.55份马来酐的混合物加热至220℃左右,制备具有琥珀酐:聚异丁烯为1.04的聚异丁烯基琥珀酐。温度达到120℃后开始通氯,将5.88份的氯以恒定的速率在5.5小时内通入热混合物中。然后使反应混合物在220℃下热渗透1,5小时左右,接着用氮气汽提约1小时。生成的聚异丁烯基琥珀酐的ASTM皂化值为64.2。该聚异丁烯基琥珀酐产物含83.8%(重量)活性组分,其余部分主要是未反应 的聚异丁烯。

B部分

将A部分的聚异丁烯基琥珀酐产物用下述方法进行胺化和硼化:

将1800克皂化值为64.2的聚异丁烯基琥珀酐产物与1317克S    150N润滑油(100℃下的粘度为150    SUS左右的中性溶剂油)在反应烧瓶中混合并加热到约149℃。然后将121.9克工业级聚乙烯胺(平均每分子含5~7个氮原子的聚乙烯胺)加入,并将混合物加热至149℃,保持约1小时,接着用氮气汽提约1.5小时。然后在搅拌和在163℃加热的情况下,用大约2小时的时间将49克硼酸加入,接着用氮气汽提2小时,然后冷却、过滤以获得最终产物。该产物在100℃下的粘度为428cs.,氮含量为1.21%(重量),硼含量为0.23%(重量),并含49.3%(重量)反应产物(即实际上已反应的物质),50.7%(重量)为未反应的聚异丁烯和矿物油(S150N)。

实施例2~4;对比实施例A

在一系列试验中,将180.6克含有实施例1制得的硼化聚异丁烯基琥珀酐-多胺分散剂的油溶液(S150N,50%(重量)油)和74.1克高碱性磺酸镁(TBN400,含9.0%(重量)Mg;在S150N稀释油中的48.3%(重量)溶液)与另加的47克S150N油一起装入一装有搅拌器的600毫升玻璃容器,并用电加热。然后装入的混合物在搅拌下以约2℃/分的加热速率从室温(约25℃)加热至所选定的温度,并保持3小时。每隔1小时观察一次是否出现浑浊。所得结果列于表1中。

经以上热处理后,将每一分散剂-清净剂混合物冷却至75℃,然后将下面的表2所指明的附加调合添加剂组分加入,并连续搅拌1.5小时使所有组分彻底混合以形成所述的调合添加剂。这样制得的每种调合添加剂都分成两份。一份放在贮器中,使温度保持在54℃左右。另一份放在约66℃加热的类似热容器中。观察所得的10种调合添加剂,以判定是否出现混浊和沉淀。这样得到的结果列于表3中。

表2

二烷基二硫代磷酸锌    40.2克

[含65%(重量)由

异丁醇衍生的烷基单

元和35%(重量)由

异戊醇衍生的烷基单

元]

(在S150N油中)

壬基酚硫化物    17.3克

(在S150N油中)

油酸酮    7.0克

(在S150N油中)

注:所有重量均指活性成分重量。

以上实施例2-4中的数据说明,与在85℃和100℃下处理的两个对比试验相比,上述经过在115°、130°和140℃下预混热处理的高分子量分散剂和高碱性金属磺酸盐清净剂调配而成的调合添加剂,根据其沉降物和混浊出现情况而判定的稳定性得到了改善。

实施例5

按实施例1的方法,使所述的无灰分散剂与高碱磺酸镁清净剂在100℃下混合3小时以形成分散-清净剂的预混物,接着冷却至75℃并将其余组分加入以形成完全调配的调合添加剂5-1~5-5,其组分列出在下面的表4中。然后将每种调合添加剂在66℃下储藏,如实施例1那样,观察出现混浊和沉淀的储藏天数。这些数据也列在表4中。

这个实施例说明铜抗氧化剂对调合添加剂出现沉淀和混浊的影响,特别说明铜抗氧化剂的用量为3.0%(重量)的油酸铜添加剂时(这相当于调合添加剂中有1200ppm铜)储藏稳定性缩短。

实施例6

分别进行一系列试验,在该试验中将实施例1的硼化分散剂溶液和高碱性磺酸镁清净剂溶液按实施例1的方法混合,在150℃的预混温度下预混1或2小时,然后将预热的混合物冷却至75℃,并将其余的组分加入以形成调合添加剂。所得的调合添加剂在66℃下储藏并观察出现混浊和沉淀的情况。所得的结果归纳在表5中,这些试验表明,随着清净剂与分散剂混合时间的延长,所得的含铜抗氧化剂的调合添加剂的储藏稳定性可得到进一步改善。

本发明的原理、优选实施方案和工作方式已在前面的说明书中描述。但本发明所要保护的并不限于所公开的特定形式,这些内容只是为了说明,而不是对本发明的限制。本技术领域的专业人员在不背离本发明的精神的情况下可作变动和变化。

本文发布于:2024-09-25 19:14:56,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/71704.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议