氧化物半导体溅射靶和使用其制造薄膜晶体管的方法与流程



1.本公开总体上涉及一种氧化物半导体溅射靶和一种使用其制造薄膜晶体管(tft)的方法,更具体地,涉及一种通过其可以沉积在驱动器件时具有高电子迁移率和高可靠性的薄膜的氧化物半导体溅射靶和使用该氧化物半导体溅射靶制造tft的方法。


背景技术:



2.尽管薄膜晶体管(tft)用于sram或rom中,但是它们主要用作用于有源矩阵平板显示器的像素的开关器件。例如,tft用作液晶显示器(lcd)或有机电致发光显示器中的开关器件或电流驱动器件。这里,用作开关器件的tft用于独立地控制各个像素,使得各个像素可以表达不同的电信号。
3.目前,lcd或有机发光显示器通常使用具有si基有源层的tft。然而,由于由约0.5cm2/vs的低电子迁移率引起的低操作速度和不稳定性特性,显示器中使用的非晶si在实现具有高分辨率/高速驱动性能的显示器方面具有局限性。另外,使用准分子激光来结晶出有机电致发光显示器中常用的多晶硅,因此其性能(诸如包括电子迁移率的tft器件特性)有利地优于非晶si的性能。然而,存在不能由多晶硅制造大面积显示器的缺点。
4.最近,作为解决方案,具有基于铟-镓-锌氧化物的有源层的tft也正在被用作显示装置的驱动器件。然而,由于具有基于铟-镓-锌氧化物的有源层的tft的电子迁移率低于多晶硅tft的电子迁移率,因此这种tft在用于具有大面积、高分辨率和高速驱动特性的下一代显示器方面具有局限性。
5.另外,为了改善迁移率,还已经开发了基于具有高in含量的氧化物的有源层。然而,当in含量高时,由于在后热处理中可能会发生的不均匀的温度分布,因此tft可能会具有不均匀的特性(诸如迁移率)。因此,该有源层方法在用于第8代或更高代大面积基底中具有局限性。


技术实现要素:



6.本公开的各个方面提供了一种氧化物半导体溅射靶和使用该氧化物半导体溅射靶制造薄膜晶体管(tft)的方法,通过该氧化物半导体溅射靶和方法,可以沉积在驱动器件时具有高电子迁移率和高可靠性的薄膜,并且可以获得具有高均匀性的大面积显示器。
7.在这方面,提供了一种在溅射工艺中用于沉积tft的有源层的氧化物半导体溅射靶。所述氧化物半导体溅射靶可以由基于in、sn、ga、zn和o的组合物的材料形成。
8.在一些实施例中,所述材料可以包含氧化镓、氧化锡、氧化锌和氧化铟,其中,相对于in+sn+ga+zn的重量,in含量、sn含量、ga含量和zn含量按重量计分别在60%至80%、0.5%至8%、5%至15%和10%至30%的范围内。
9.还提供了一种制造tft的方法,该方法包括使用所述氧化物半导体溅射靶沉积有源层。这种tft可以用在例如液晶显示器(lcd)、有机发光显示器、电致发光显示器等中。
10.根据本公开,由基于in、sn、ga、zn和o的组合物的五元半导体材料形成靶,并且使
用该靶沉积tft的有源层。根据本公开的有源层在驱动器件时可以具有比由基于in、ga、zn和o的组合物的四元半导体材料形成的相关技术的有源层的电子迁移率和可靠性更优的电子迁移率和可靠性。另外,在根据本公开的有源层中,减少了根据后处理的温度的特性方面的不均匀性。因此,可以改善该tft的性能和包括该tft的显示装置的性能。在大面积显示装置的制造中,可以改善tft的均匀性,从而改善制造的良率。
11.本公开的方法和设备具有根据附图将是明显的或在附图中更详细地阐述的其他特征和优点,附图的公开内容被包含于此,并且在以下具体实施方式中,附图和具体实施方式一起用于解释本公开的某些原理。
附图说明
12.图1是示出根据实施例的tft的剖视图;
13.图2是示出根据实施例的tft和相关技术的tft中的根据栅极电压的漏极电流的曲线图;
14.图3是示出根据实施例的根据靶中的in含量的tft器件的电子迁移率的曲线图;
15.图4示出了图3中的tft的特性的分类的结果;
16.图5示出了包括导体薄膜的tft、包括由于其较差特性而不适合于用作tft的有源层的半导体薄膜的tft、包括具有优异特性的半导体薄膜的tft中根据vg的id的变化;
17.图6是示出根据sn含量的薄膜蚀刻速率的曲线图;
18.图7是示出了根据靶的sn含量相对于in含量的tft器件的电子迁移率的曲线图;以及
19.图8是示出了根据ga相对于ga和zn的含量比的tft器件的迁移率分布的曲线图。
具体实施方式
20.在下文中,将参照附图详细描述根据实施例的氧化物半导体溅射靶、包括使用该氧化物半导体溅射靶沉积的有源层的薄膜晶体管(tft)以及包括该tft的显示装置。
21.在以下描述中,在由于包括已知功能和组件的详细描述而使本公开的主题不清楚的情况下,将省略已知功能和组件的详细描述。
22.图1是示出根据实施例的tft的剖视图。
23.根据实施例的氧化物半导体溅射靶是在溅射工艺中用于沉积如图1中所示的tft 100的有源层130的靶。溅射是一种使等离子体粒子碰撞靶并将从靶射出的靶粒子沉积在与靶相对放置的基底上的方法。
24.在一些实施例中,氧化物半导体靶可以包括基于in、sn、ga、zn和o的组合物的材料,例如,由基于in、sn、ga、zn和o的组合物的材料形成。例如,氧化物半导体靶可以包括氧化镓、氧化锡、氧化锌和氧化铟,例如,由氧化镓、氧化锡、氧化锌和氧化铟形成。这里,相对于in+sn+ga+zn的重量,in含量、sn含量、ga含量和zn含量可以按重量计分别在60%至80%、0.5%至8%、5%至15%和10%至30%的范围内。相对于in+sn+ga+zn的重量,in含量、sn含量、ga含量和zn含量可以按重量计分别在65%至75%、1%至5%、7%至13%和10%至20%的范围内。
25.尽管图1示出了具有底部栅极结构的tft,但本公开不限于此。例如,根据本公开的
溅射靶可以用在具有各种结构的tft(诸如顶部栅极结构tft)的薄膜沉积中。
26.图2是示出根据实施例的tft和相关技术的tft中的根据栅极电压的漏极电流的曲线图。
27.tft(a)包括有源层130,有源层130使用氧化物半导体靶沉积,氧化物半导体靶由基于in、sn、ga、zn和o的组合物的材料形成,该tft(a)通过由基于in、sn、ga、zn和o的组合物的材料形成氧化物半导体靶,并且使用该氧化物半导体靶通过溅射工艺沉积tft 100的有源层130来制造。如图2中所示,当与包括由基于in、ga、zn和o的组合物的四元半导体材料形成的有源层的相关技术的tft(b)相比时,tft(a)在高电压范围(vg》vth)内具有约为相关技术的tft(b)的漏极电流的10倍的高漏极电流,因此具有高的通断开关比。还可以理解的是,由于作为开关器件的主要特性的亚阈值摆幅(v/dec)低,因此tft(a)可以表现出更快的开关。
28.图3是示出了根据实施例的根据靶中的in含量的tft器件的电子迁移率的曲线图,图4示出了图3中的tft的特性的分类结果。另外,图5示出了包括导体薄膜的tft、包括由于其较差特性而不适合于用作tft的有源层的半导体薄膜的tft、包括具有优异特性的半导体薄膜的tft中根据vg的id的变化。
29.如图3至图5中所示,使用in含量小于按重量计60%的靶沉积的薄膜是有半导体特性的,但由于其较差的特性而不适合于用作tft的有源层。另外,使用in含量按重量计超过80%的靶沉积的薄膜具有低电子迁移率或者是导电的,因此不能用作tft的有源层。相反,使用in含量按重量计为60%至80%的靶沉积的薄膜具有优异的电子迁移率。由此,可以理解的是,根据实施例的用于形成有源层的靶的in含量按重量计在60%至80%的范围内。根据实施例的薄膜可以具有至少30cm2/v
·
s的电子迁移率值。
30.当有源层导电时,无论栅极电压如何,都从tft测量到高漏极电流,因此,tft不能实现相对于阈值电压执行通断开关的半导体器件特性。
31.在其中将不适合于用作半导体的薄膜用作有源层的tft中,漏极电流根据栅极电压而变化,但其差异不显著,并且当栅极电压等于或低于阈值电压时,出现高的漏电流。因此,该tft作为开关器件具有较差的性能。同时,使用具有优异半导体特性的薄膜的tft根据栅极电压具有显著的漏极电流变化,因此作为开关器件具有优异的性能。
32.图6是示出根据实施例的根据靶的sn含量的薄膜的蚀刻速率的曲线图。
33.如图6中所示,可以理解的是,当相对于in+sn+ga+zn的重量,靶的sn含量按重量计超过8%时,使用该靶形成的薄膜的蚀刻速率显著降低。
34.tft使用光刻工艺来制造,在光刻工艺中,有源层需要在沉积之后通过湿法蚀刻以预定形状图案化。对于湿法蚀刻,需要等于或高于预定速率的蚀刻速率。具体地,需要等于或高于的蚀刻速率。
35.图7是示出了根据靶的sn含量相对于in含量的tft器件的电子迁移率的曲线图。
36.如图7中所示,当靶的sn相对于in的含量比(例如,重量比)在0.03至0.15的范围内(即,in与sn的重量比=1:0.03至0.15)时,使用该靶形成的薄膜具有优异的电子迁移率。因此,可以理解的是,根据实施例的用于形成有源层的靶的sn相对于in的含量比优选在0.03至0.15的范围内。
37.图8是示出了根据ga相对于ga和zn的含量比的tft器件的迁移率分布的曲线图。
38.如图8中所示,当靶的ga相对于ga和zn的含量比(例如,重量比)等于或低于0.6时,使用该靶形成的薄膜具有优异的迁移率分布。因此,可以理解的是,靶的ga相对于ga和zn的含量比优选为0.6或更低。
39.根据本公开的迁移率分布是指通过沉积有源层然后在200℃和400℃下热处理薄膜而制造的tft器件中的迁移率差异。优选地,迁移率分布为30%或更小。
40.相对于in+sn+ga+zn的重量,ga含量和zn含量的总和可以按重量计在20%至40%的范围内。
41.可以通过以上述含量比混合ga氧化物粉末、sn氧化物粉末、zn氧化物粉末和in氧化物粉末,通过成形方法(诸如冷压、粉浆浇铸、压滤、冷等静压、凝胶浇铸、离心沉降或重力沉降)使混合物成形,然后烧结成形的混合物来制造具有上述组成和含量比的靶。以这种方式制造的靶可以在结合到由例如金属材料形成的背板并且被背板支撑的同时用于溅射工艺中。
42.另外,包括使用根据实施例的氧化物半导体靶沉积的有源层130的tft 100被用作液晶显示器(lcd)或有机电致发光显示器的开关器件或电流驱动器件。tft 100包括栅电极110、栅极绝缘膜120、有源层130、源电极140和漏电极150。
43.同时,可以由可以满足tft 100的热力学和机械要求的玻璃、半导体晶片、金属氧化物、陶瓷材料、塑料等形成基底10。具体地,基底10可以由玻璃或塑料形成,但不限于此。
44.在基底10上形成栅电极110。当基底10用在显示装置中时,栅电极110从在第一方向(例如,水平方向)上形成在基底10上的栅极线(未示出)分支。将用于导通/截止tft 100的电压施加到栅电极110。在这方面,可以由导电材料(诸如金属或金属氧化物)形成栅电极110。举例来说,可以由金属(诸如pt、ru、au、ag、mo、al、w或cu)或导电氧化物(诸如氧化铟锌(izo)或氧化铟锡(ito))形成栅电极110。也就是说,通过在基底10上沉积这种导电材料的薄膜,然后图案化该薄膜来形成栅电极110。这里,栅电极110可以通过单个工艺与栅极线(未示出)同时形成。
45.栅电极110可以具有由扩散阻挡膜(未示出)和沉积在扩散阻挡膜(未示出)上的cu膜组成的结构。扩散阻挡膜(未示出)被构造为防止cu原子扩散到基底10中,从而改善cu的结合力和电特性。扩散阻挡膜(未示出)可以通过包含ti、ta、mo、cr、ni、pt等中的至少一种来实现。
46.栅极绝缘膜120可以由用在典型半导体器件中的绝缘材料形成。具体地,栅极绝缘膜120可以由si氧化物或si氮化物形成。例如,栅极绝缘膜120可以由高k材料中的至少一种形成,诸如hfo2、al2o3和si3n4及其混合物,其中,高k材料中的每种的介电常数高于sio2的介电常数。
47.对应于栅电极110在栅极绝缘膜120上形成有源层130,并且有源层130具有沟道区域ch。
48.另外,在一些实施例中,有源层130通过使用根据实施例的上述氧化物半导体溅射靶的溅射工艺沉积在栅极绝缘膜120上,然后图案化沉积的层,其中在上述氧化物半导体溅射靶中,相对于in+sn+ga+zn的重量,in含量、sn含量、ga含量和zn含量按重量计分别在60%至80%、0.5%至8%、5%至15%和10%至30%的范围内。
49.由于有源层130的电子迁移率和可靠性可以优于由基于in、ga、zn和o的组合物的
四元半导体材料形成的相关技术的有源层的电子迁移率和可靠性并且有源层130用具有上述组成和含量比的薄膜实现,因此可以改善包括有源层130的tft 100的性能。
50.在有源层130上设置源电极140和漏电极150,同时彼此间隔开。像栅电极110一样,源电极140和漏电极150中的每个可以由诸如金属的导电材料形成,并且可以具有由扩散阻挡膜(未示出)和沉积在扩散阻挡膜(未示出)上的cu膜组成的结构。
51.源电极140连接到数据线(未示出),数据线(未示出)在与栅极线(未示出)垂直相交的第二方向(例如,竖直方向)上布置在基底10上。另外,漏电极150连接到像素电极(未示出)。
52.同时,可以在有源层130与源电极140和漏电极150之间形成作为杂质半导体层的欧姆接触层135。
53.另外,尽管在图1中未示出,但是tft还可以包括形成在源电极和漏电极的顶部上的钝化层(未示出)等。可以由sio2、sin
x
和其他氧化物中的一种形成钝化层。
54.根据实施例的上述tft 100用作各种显示装置的开关器件或电流驱动器件。例如,尽管未示出,但是当tft 100用于包括彼此面对的上基底和下基底、夹在上基底与下基底之间的液晶层以及在下基底下方以向前发光的背光的lcd中时,tft 100设置在其上布置有多条栅极线和多条数据线的下基底上,具体地,在由多条栅极线和多条数据线的交叉限定的像素区域中。这里,滤器对应于像素区域设置在上基底上。此外,光学膜可以设置在上基底的顶表面上,以补充lcd的光学特性。
55.除了lcd,根据实施例的tft 100也可以用于有机发光显示装置中。在这种情况下,tft 100形成在由布置在下基底上的多条栅极线和多条数据线的交叉限定的像素区域中。这里,有机发光元件形成在下基底上。下基底和上基底结合在一起,从而形成有机发光显示装置的有机发光面板。这里,有机发光元件中的每个包括阳极和阴极,以及定位在阳极与阴极之间的空穴传输层、发射层和电子传输层。这里,可以分别在阳极与空穴传输层之间以及在电子传输层与阴极之间设置空穴注入层和电子注入层,以便更有效地注入空穴和电子。因此,通过空穴注入层和空穴传输层从阳极注入到发射层中的空穴以及通过电子注入层和电子传输层从阴极注入到发射层中的电子一起形成激子,激子中的每个产生同空穴与电子之间的能隙匹配的光。这里,阳极可以由诸如氧化铟锡(ito)或氧化铟锌(izo)的具有高逸出功的透明材料形成,阴极可以由诸如al、ca或al合金的具有低逸出功的化学稳定材料形成。
56.另外,光学膜可以设置在有机发光显示装置的上表面上以补充oled显示装置的光学性质。
57.已经参照附图呈现了本公开的特定示例性实施例的前述描述,并且这些描述不意图是详尽无遗的或将本公开限制于在这里公开的精确形式,并且鉴于上述教导,许多修改和变化对于本领域普通技术人员而言将是明显可能的。
58.因此,意图的是,本公开的范围不限于前述实施例,而是由所附权利要求及其等同物限定。

技术特征:


1.一种用于在溅射工艺中沉积薄膜晶体管的有源层的氧化物半导体溅射靶,所述氧化物半导体溅射靶包括基于in、sn、ga、zn和o的组合物的材料。2.根据权利要求1所述的氧化物半导体溅射靶,其中,所述材料包括氧化镓、氧化锡、氧化锌和氧化铟,其中,相对于in+sn+ga+zn的重量,in含量、sn含量、ga含量和zn含量按重量计分别在60%至80%、0.5%至8%、5%至15%和10%至30%的范围内。3.根据权利要求2所述的氧化物半导体溅射靶,其中,相对于in+sn+ga+zn的重量,所述in含量、所述sn含量、所述ga含量和所述zn含量按重量计分别在65%至75%、1%至5%、7%至13%和10%至20%的范围内。4.根据权利要求1所述的氧化物半导体溅射靶,其中,sn相对于in的含量比在0.03至0.15的范围内。5.根据权利要求1所述的氧化物半导体溅射靶,其中,相对于in+sn+ga+zn的重量,ga含量和zn含量的总和按重量计在20%至40%的范围内。6.根据权利要求1所述的氧化物半导体溅射靶,其中,ga相对于ga+zn的含量比为0.6或更小。7.一种制造薄膜晶体管的方法,所述方法包括使用根据权利要求1至权利要求6中的一项所述的氧化物半导体溅射靶沉积有源层。8.根据权利要求7所述的方法,所述方法还包括:在沉积所述有源层之后,在200℃至400℃的范围内的温度下热处理所述有源层。9.根据权利要求7所述的方法,其中,所述薄膜晶体管设置在液晶显示装置或有机发光显示装置中。

技术总结


公开了一种用于在溅射工艺中沉积TFT的有源层的氧化物半导体溅射靶和一种使用其制造TFT的方法。氧化物半导体溅射靶由基于In、Sn、Ga、Zn和O的组合物的材料形成。该材料包含氧化镓、氧化锡、氧化锌和氧化铟。相对于In+Sn+Ga+Zn的重量,In、Sn、Ga和Zn含量按重量计分别在60%至80%、0.5%至8%、5%至15%和10%至30%的范围内。制造TFT的方法包括使用该氧化物半导体溅射靶沉积有源层。这种TFT用在液晶显示器(LCD)、有机发光显示器、电致发光显示器等中。等中。等中。


技术研发人员:

姜信赫 文定炫 玉康敏

受保护的技术使用者:

KV材料株式会社

技术研发日:

2022.06.20

技术公布日:

2022/12/22

本文发布于:2024-09-24 11:27:09,感谢您对本站的认可!

本文链接:https://www.17tex.com/tex/2/46012.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:氧化物   半导体   含量   栅极
留言与评论(共有 0 条评论)
   
验证码:
Copyright ©2019-2024 Comsenz Inc.Powered by © 易纺专利技术学习网 豫ICP备2022007602号 豫公网安备41160202000603 站长QQ:729038198 关于我们 投诉建议